mirror of
https://github.com/mudler/LocalAI.git
synced 2025-05-20 10:35:01 +00:00
Revert "[Refactor]: Core/API Split" (#1550)
Revert "[Refactor]: Core/API Split (#1506)"
This reverts commit ab7b4d5ee9
.
This commit is contained in:
parent
ab7b4d5ee9
commit
db926896bd
77 changed files with 3132 additions and 3456 deletions
|
@ -1,144 +0,0 @@
|
|||
package backend
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/schema"
|
||||
"github.com/google/uuid"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c schema.Config, o *schema.StartupOptions) (func() ([]float32, error), error) {
|
||||
if !c.Embeddings {
|
||||
return nil, fmt.Errorf("endpoint disabled for this model by API configuration")
|
||||
}
|
||||
|
||||
modelFile := c.Model
|
||||
|
||||
grpcOpts := gRPCModelOpts(c)
|
||||
|
||||
var inferenceModel interface{}
|
||||
var err error
|
||||
|
||||
opts := modelOpts(c, o, []model.Option{
|
||||
model.WithLoadGRPCLoadModelOpts(grpcOpts),
|
||||
model.WithThreads(uint32(c.Threads)),
|
||||
model.WithAssetDir(o.AssetsDestination),
|
||||
model.WithModel(modelFile),
|
||||
model.WithContext(o.Context),
|
||||
model.WithExternalBackends(o.ExternalGRPCBackends, false),
|
||||
})
|
||||
|
||||
if c.Backend == "" {
|
||||
inferenceModel, err = loader.GreedyLoader(opts...)
|
||||
} else {
|
||||
opts = append(opts, model.WithBackendString(c.Backend))
|
||||
inferenceModel, err = loader.BackendLoader(opts...)
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var fn func() ([]float32, error)
|
||||
switch model := inferenceModel.(type) {
|
||||
case *grpc.Client:
|
||||
fn = func() ([]float32, error) {
|
||||
predictOptions := gRPCPredictOpts(c, loader.ModelPath)
|
||||
if len(tokens) > 0 {
|
||||
embeds := []int32{}
|
||||
|
||||
for _, t := range tokens {
|
||||
embeds = append(embeds, int32(t))
|
||||
}
|
||||
predictOptions.EmbeddingTokens = embeds
|
||||
|
||||
res, err := model.Embeddings(o.Context, predictOptions)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return res.Embeddings, nil
|
||||
}
|
||||
predictOptions.Embeddings = s
|
||||
|
||||
res, err := model.Embeddings(o.Context, predictOptions)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return res.Embeddings, nil
|
||||
}
|
||||
default:
|
||||
fn = func() ([]float32, error) {
|
||||
return nil, fmt.Errorf("embeddings not supported by the backend")
|
||||
}
|
||||
}
|
||||
|
||||
return func() ([]float32, error) {
|
||||
embeds, err := fn()
|
||||
if err != nil {
|
||||
return embeds, err
|
||||
}
|
||||
// Remove trailing 0s
|
||||
for i := len(embeds) - 1; i >= 0; i-- {
|
||||
if embeds[i] == 0.0 {
|
||||
embeds = embeds[:i]
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
return embeds, nil
|
||||
}, nil
|
||||
}
|
||||
|
||||
func EmbeddingOpenAIRequest(modelName string, input *schema.OpenAIRequest, cl *services.ConfigLoader, ml *model.ModelLoader, startupOptions *schema.StartupOptions) (*schema.OpenAIResponse, error) {
|
||||
config, input, err := ReadConfigFromFileAndCombineWithOpenAIRequest(modelName, input, cl, startupOptions)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
items := []schema.Item{}
|
||||
|
||||
for i, s := range config.InputToken {
|
||||
// get the model function to call for the result
|
||||
embedFn, err := ModelEmbedding("", s, ml, *config, startupOptions)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
embeddings, err := embedFn()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
|
||||
}
|
||||
|
||||
for i, s := range config.InputStrings {
|
||||
// get the model function to call for the result
|
||||
embedFn, err := ModelEmbedding(s, []int{}, ml, *config, startupOptions)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
embeddings, err := embedFn()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
|
||||
}
|
||||
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
return &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Data: items,
|
||||
Object: "list",
|
||||
}, nil
|
||||
}
|
|
@ -1,210 +0,0 @@
|
|||
package backend
|
||||
|
||||
import (
|
||||
"encoding/base64"
|
||||
"fmt"
|
||||
"os"
|
||||
"path"
|
||||
"path/filepath"
|
||||
"strconv"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/google/uuid"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, c schema.Config, o *schema.StartupOptions) (func() error, error) {
|
||||
|
||||
opts := modelOpts(c, o, []model.Option{
|
||||
model.WithBackendString(c.Backend),
|
||||
model.WithAssetDir(o.AssetsDestination),
|
||||
model.WithThreads(uint32(c.Threads)),
|
||||
model.WithContext(o.Context),
|
||||
model.WithModel(c.Model),
|
||||
model.WithLoadGRPCLoadModelOpts(&proto.ModelOptions{
|
||||
CUDA: c.CUDA || c.Diffusers.CUDA,
|
||||
SchedulerType: c.Diffusers.SchedulerType,
|
||||
PipelineType: c.Diffusers.PipelineType,
|
||||
CFGScale: c.Diffusers.CFGScale,
|
||||
LoraAdapter: c.LoraAdapter,
|
||||
LoraScale: c.LoraScale,
|
||||
LoraBase: c.LoraBase,
|
||||
IMG2IMG: c.Diffusers.IMG2IMG,
|
||||
CLIPModel: c.Diffusers.ClipModel,
|
||||
CLIPSubfolder: c.Diffusers.ClipSubFolder,
|
||||
CLIPSkip: int32(c.Diffusers.ClipSkip),
|
||||
ControlNet: c.Diffusers.ControlNet,
|
||||
}),
|
||||
model.WithExternalBackends(o.ExternalGRPCBackends, false),
|
||||
})
|
||||
|
||||
inferenceModel, err := loader.BackendLoader(
|
||||
opts...,
|
||||
)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
fn := func() error {
|
||||
_, err := inferenceModel.GenerateImage(
|
||||
o.Context,
|
||||
&proto.GenerateImageRequest{
|
||||
Height: int32(height),
|
||||
Width: int32(width),
|
||||
Mode: int32(mode),
|
||||
Step: int32(step),
|
||||
Seed: int32(seed),
|
||||
CLIPSkip: int32(c.Diffusers.ClipSkip),
|
||||
PositivePrompt: positive_prompt,
|
||||
NegativePrompt: negative_prompt,
|
||||
Dst: dst,
|
||||
Src: src,
|
||||
EnableParameters: c.Diffusers.EnableParameters,
|
||||
})
|
||||
return err
|
||||
}
|
||||
|
||||
return fn, nil
|
||||
}
|
||||
|
||||
func ImageGenerationOpenAIRequest(modelName string, input *schema.OpenAIRequest, cl *services.ConfigLoader, ml *model.ModelLoader, startupOptions *schema.StartupOptions) (*schema.OpenAIResponse, error) {
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
|
||||
if modelName == "" {
|
||||
modelName = model.StableDiffusionBackend
|
||||
}
|
||||
log.Debug().Msgf("Loading model: %+v", modelName)
|
||||
|
||||
config, input, err := ReadConfigFromFileAndCombineWithOpenAIRequest(modelName, input, cl, startupOptions)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed reading parameters from request: %w", err)
|
||||
}
|
||||
|
||||
src := ""
|
||||
if input.File != "" {
|
||||
if strings.HasPrefix(input.File, "http://") || strings.HasPrefix(input.File, "https://") {
|
||||
src, err = utils.CreateTempFileFromUrl(input.File, "", "image-src")
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed downloading file:%w", err)
|
||||
}
|
||||
} else {
|
||||
src, err = utils.CreateTempFileFromBase64(input.File, "", "base64-image-src")
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error creating temporary image source file: %w", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
|
||||
switch config.Backend {
|
||||
case "stablediffusion":
|
||||
config.Backend = model.StableDiffusionBackend
|
||||
case "tinydream":
|
||||
config.Backend = model.TinyDreamBackend
|
||||
case "":
|
||||
config.Backend = model.StableDiffusionBackend
|
||||
}
|
||||
|
||||
sizeParts := strings.Split(input.Size, "x")
|
||||
if len(sizeParts) != 2 {
|
||||
return nil, fmt.Errorf("invalid value for 'size'")
|
||||
}
|
||||
width, err := strconv.Atoi(sizeParts[0])
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("invalid value for 'size'")
|
||||
}
|
||||
height, err := strconv.Atoi(sizeParts[1])
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("invalid value for 'size'")
|
||||
}
|
||||
|
||||
b64JSON := false
|
||||
if input.ResponseFormat.Type == "b64_json" {
|
||||
b64JSON = true
|
||||
}
|
||||
// src and clip_skip
|
||||
var result []schema.Item
|
||||
for _, i := range config.PromptStrings {
|
||||
n := input.N
|
||||
if input.N == 0 {
|
||||
n = 1
|
||||
}
|
||||
for j := 0; j < n; j++ {
|
||||
prompts := strings.Split(i, "|")
|
||||
positive_prompt := prompts[0]
|
||||
negative_prompt := ""
|
||||
if len(prompts) > 1 {
|
||||
negative_prompt = prompts[1]
|
||||
}
|
||||
|
||||
mode := 0
|
||||
step := config.Step
|
||||
if step == 0 {
|
||||
step = 15
|
||||
}
|
||||
|
||||
if input.Mode != 0 {
|
||||
mode = input.Mode
|
||||
}
|
||||
|
||||
if input.Step != 0 {
|
||||
step = input.Step
|
||||
}
|
||||
|
||||
tempDir := ""
|
||||
if !b64JSON {
|
||||
tempDir = startupOptions.ImageDir
|
||||
}
|
||||
// Create a temporary file
|
||||
outputFile, err := os.CreateTemp(tempDir, "b64")
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
outputFile.Close()
|
||||
output := outputFile.Name() + ".png"
|
||||
// Rename the temporary file
|
||||
err = os.Rename(outputFile.Name(), output)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
fn, err := ImageGeneration(height, width, mode, step, input.Seed, positive_prompt, negative_prompt, src, output, ml, *config, startupOptions)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err := fn(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
item := &schema.Item{}
|
||||
|
||||
if b64JSON {
|
||||
defer os.RemoveAll(output)
|
||||
data, err := os.ReadFile(output)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
item.B64JSON = base64.StdEncoding.EncodeToString(data)
|
||||
} else {
|
||||
base := filepath.Base(output)
|
||||
item.URL = path.Join(startupOptions.ImageDir, base)
|
||||
}
|
||||
|
||||
result = append(result, *item)
|
||||
}
|
||||
}
|
||||
|
||||
return &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Data: result,
|
||||
}, nil
|
||||
}
|
|
@ -1,861 +0,0 @@
|
|||
package backend
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
"unicode/utf8"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
"github.com/go-skynet/LocalAI/pkg/grammar"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/google/uuid"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
////////// TYPES //////////////
|
||||
|
||||
type LLMResponse struct {
|
||||
Response string // should this be []byte?
|
||||
Usage TokenUsage
|
||||
}
|
||||
|
||||
// TODO: Test removing this and using the variant in pkg/schema someday?
|
||||
type TokenUsage struct {
|
||||
Prompt int
|
||||
Completion int
|
||||
}
|
||||
|
||||
type TemplateConfigBindingFn func(*schema.Config) *string
|
||||
|
||||
// type LLMStreamProcessor func(s string, req *schema.OpenAIRequest, config *schema.Config, loader *model.ModelLoader, responses chan schema.OpenAIResponse)
|
||||
|
||||
/////// CONSTS ///////////
|
||||
|
||||
const DEFAULT_NO_ACTION_NAME = "answer"
|
||||
const DEFAULT_NO_ACTION_DESCRIPTION = "use this action to answer without performing any action"
|
||||
|
||||
////// INFERENCE /////////
|
||||
|
||||
func ModelInference(ctx context.Context, s string, images []string, loader *model.ModelLoader, c schema.Config, o *schema.StartupOptions, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
|
||||
modelFile := c.Model
|
||||
|
||||
grpcOpts := gRPCModelOpts(c)
|
||||
|
||||
var inferenceModel *grpc.Client
|
||||
var err error
|
||||
|
||||
opts := modelOpts(c, o, []model.Option{
|
||||
model.WithLoadGRPCLoadModelOpts(grpcOpts),
|
||||
model.WithThreads(uint32(c.Threads)), // some models uses this to allocate threads during startup
|
||||
model.WithAssetDir(o.AssetsDestination),
|
||||
model.WithModel(modelFile),
|
||||
model.WithContext(o.Context),
|
||||
model.WithExternalBackends(o.ExternalGRPCBackends, false),
|
||||
})
|
||||
|
||||
if c.Backend != "" {
|
||||
opts = append(opts, model.WithBackendString(c.Backend))
|
||||
}
|
||||
|
||||
// Check if the modelFile exists, if it doesn't try to load it from the gallery
|
||||
if o.AutoloadGalleries { // experimental
|
||||
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
|
||||
utils.ResetDownloadTimers()
|
||||
// if we failed to load the model, we try to download it
|
||||
err := gallery.InstallModelFromGalleryByName(o.Galleries, modelFile, loader.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if c.Backend == "" {
|
||||
inferenceModel, err = loader.GreedyLoader(opts...)
|
||||
} else {
|
||||
inferenceModel, err = loader.BackendLoader(opts...)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
|
||||
fn := func() (LLMResponse, error) {
|
||||
opts := gRPCPredictOpts(c, loader.ModelPath)
|
||||
opts.Prompt = s
|
||||
opts.Images = images
|
||||
|
||||
tokenUsage := TokenUsage{}
|
||||
|
||||
// check the per-model feature flag for usage, since tokenCallback may have a cost.
|
||||
// Defaults to off as for now it is still experimental
|
||||
if c.FeatureFlag.Enabled("usage") {
|
||||
userTokenCallback := tokenCallback
|
||||
if userTokenCallback == nil {
|
||||
userTokenCallback = func(token string, usage TokenUsage) bool {
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
promptInfo, pErr := inferenceModel.TokenizeString(ctx, opts)
|
||||
if pErr == nil && promptInfo.Length > 0 {
|
||||
tokenUsage.Prompt = int(promptInfo.Length)
|
||||
}
|
||||
|
||||
tokenCallback = func(token string, usage TokenUsage) bool {
|
||||
tokenUsage.Completion++
|
||||
return userTokenCallback(token, tokenUsage)
|
||||
}
|
||||
}
|
||||
|
||||
if tokenCallback != nil {
|
||||
ss := ""
|
||||
|
||||
var partialRune []byte
|
||||
err := inferenceModel.PredictStream(ctx, opts, func(chars []byte) {
|
||||
partialRune = append(partialRune, chars...)
|
||||
|
||||
for len(partialRune) > 0 {
|
||||
r, size := utf8.DecodeRune(partialRune)
|
||||
if r == utf8.RuneError {
|
||||
// incomplete rune, wait for more bytes
|
||||
break
|
||||
}
|
||||
|
||||
tokenCallback(string(r), tokenUsage)
|
||||
ss += string(r)
|
||||
|
||||
partialRune = partialRune[size:]
|
||||
}
|
||||
})
|
||||
return LLMResponse{
|
||||
Response: ss,
|
||||
Usage: tokenUsage,
|
||||
}, err
|
||||
} else {
|
||||
// TODO: Is the chicken bit the only way to get here? is that acceptable?
|
||||
reply, err := inferenceModel.Predict(ctx, opts)
|
||||
if err != nil {
|
||||
return LLMResponse{}, err
|
||||
}
|
||||
return LLMResponse{
|
||||
Response: string(reply.Message),
|
||||
Usage: tokenUsage,
|
||||
}, err
|
||||
}
|
||||
}
|
||||
|
||||
return fn, nil
|
||||
}
|
||||
|
||||
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
|
||||
var mu sync.Mutex = sync.Mutex{}
|
||||
|
||||
func Finetune(config schema.Config, input, prediction string) string {
|
||||
if config.Echo {
|
||||
prediction = input + prediction
|
||||
}
|
||||
|
||||
for _, c := range config.Cutstrings {
|
||||
mu.Lock()
|
||||
reg, ok := cutstrings[c]
|
||||
if !ok {
|
||||
cutstrings[c] = regexp.MustCompile(c)
|
||||
reg = cutstrings[c]
|
||||
}
|
||||
mu.Unlock()
|
||||
prediction = reg.ReplaceAllString(prediction, "")
|
||||
}
|
||||
|
||||
for _, c := range config.TrimSpace {
|
||||
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
|
||||
}
|
||||
|
||||
for _, c := range config.TrimSuffix {
|
||||
prediction = strings.TrimSpace(strings.TrimSuffix(prediction, c))
|
||||
}
|
||||
return prediction
|
||||
|
||||
}
|
||||
|
||||
////// CONFIG AND REQUEST HANDLING ///////////////
|
||||
|
||||
func ReadConfigFromFileAndCombineWithOpenAIRequest(modelFile string, input *schema.OpenAIRequest, cm *services.ConfigLoader, startupOptions *schema.StartupOptions) (*schema.Config, *schema.OpenAIRequest, error) {
|
||||
// Load a config file if present after the model name
|
||||
modelConfig := filepath.Join(startupOptions.ModelPath, modelFile+".yaml")
|
||||
|
||||
var cfg *schema.Config
|
||||
|
||||
defaults := func() {
|
||||
cfg = schema.DefaultConfig(modelFile)
|
||||
cfg.ContextSize = startupOptions.ContextSize
|
||||
cfg.Threads = startupOptions.Threads
|
||||
cfg.F16 = startupOptions.F16
|
||||
cfg.Debug = startupOptions.Debug
|
||||
}
|
||||
|
||||
cfgExisting, exists := cm.GetConfig(modelFile)
|
||||
if !exists {
|
||||
if _, err := os.Stat(modelConfig); err == nil {
|
||||
if err := cm.LoadConfig(modelConfig); err != nil {
|
||||
return nil, nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
|
||||
}
|
||||
cfgExisting, exists = cm.GetConfig(modelFile)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
} else {
|
||||
defaults()
|
||||
}
|
||||
} else {
|
||||
defaults()
|
||||
}
|
||||
} else {
|
||||
cfg = &cfgExisting
|
||||
}
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
schema.UpdateConfigFromOpenAIRequest(cfg, input)
|
||||
|
||||
// Don't allow 0 as setting
|
||||
if cfg.Threads == 0 {
|
||||
if startupOptions.Threads != 0 {
|
||||
cfg.Threads = startupOptions.Threads
|
||||
} else {
|
||||
cfg.Threads = 4
|
||||
}
|
||||
}
|
||||
|
||||
// Enforce debug flag if passed from CLI
|
||||
if startupOptions.Debug {
|
||||
cfg.Debug = true
|
||||
}
|
||||
|
||||
return cfg, input, nil
|
||||
}
|
||||
|
||||
func ComputeChoices(
|
||||
req *schema.OpenAIRequest,
|
||||
predInput string,
|
||||
config *schema.Config,
|
||||
o *schema.StartupOptions,
|
||||
loader *model.ModelLoader,
|
||||
cb func(string, *[]schema.Choice),
|
||||
tokenCallback func(string, TokenUsage) bool) ([]schema.Choice, TokenUsage, error) {
|
||||
n := req.N // number of completions to return
|
||||
result := []schema.Choice{}
|
||||
|
||||
if n == 0 {
|
||||
n = 1
|
||||
}
|
||||
|
||||
images := []string{}
|
||||
for _, m := range req.Messages {
|
||||
images = append(images, m.StringImages...)
|
||||
}
|
||||
|
||||
// get the model function to call for the result
|
||||
predFunc, err := ModelInference(req.Context, predInput, images, loader, *config, o, tokenCallback)
|
||||
if err != nil {
|
||||
return result, TokenUsage{}, err
|
||||
}
|
||||
|
||||
tokenUsage := TokenUsage{}
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
prediction, err := predFunc()
|
||||
if err != nil {
|
||||
return result, TokenUsage{}, err
|
||||
}
|
||||
|
||||
tokenUsage.Prompt += prediction.Usage.Prompt
|
||||
tokenUsage.Completion += prediction.Usage.Completion
|
||||
|
||||
finetunedResponse := Finetune(*config, predInput, prediction.Response)
|
||||
cb(finetunedResponse, &result)
|
||||
|
||||
//result = append(result, Choice{Text: prediction})
|
||||
|
||||
}
|
||||
return result, tokenUsage, err
|
||||
}
|
||||
|
||||
// TODO: No functions???? Commonize with prepareChatGenerationOpenAIRequest below?
|
||||
func prepareGenerationOpenAIRequest(bindingFn TemplateConfigBindingFn, modelName string, input *schema.OpenAIRequest, cl *services.ConfigLoader, ml *model.ModelLoader, startupOptions *schema.StartupOptions) (*schema.Config, error) {
|
||||
config, input, err := ReadConfigFromFileAndCombineWithOpenAIRequest(modelName, input, cl, startupOptions)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
if input.ResponseFormat.Type == "json_object" {
|
||||
input.Grammar = grammar.JSONBNF
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
|
||||
configTemplate := bindingFn(config)
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
if (*configTemplate == "") && (ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model))) {
|
||||
*configTemplate = config.Model
|
||||
}
|
||||
if *configTemplate == "" {
|
||||
return nil, fmt.Errorf(("failed to find templateConfig"))
|
||||
}
|
||||
|
||||
return config, nil
|
||||
}
|
||||
|
||||
////////// SPECIFIC REQUESTS //////////////
|
||||
// TODO: For round one of the refactor, give each of the three primary text endpoints their own function?
|
||||
// SEMITODO: During a merge, edit/completion were semi-combined - but remain nominally split
|
||||
// Can cleanup into a common form later if possible easier if they are all here for now
|
||||
// If they remain different, extract each of these named segments to a seperate file
|
||||
|
||||
func prepareChatGenerationOpenAIRequest(modelName string, input *schema.OpenAIRequest, cl *services.ConfigLoader, ml *model.ModelLoader, startupOptions *schema.StartupOptions) (*schema.Config, string, bool, error) {
|
||||
|
||||
// IMPORTANT DEFS
|
||||
funcs := grammar.Functions{}
|
||||
|
||||
// The Basic Begining
|
||||
|
||||
config, input, err := ReadConfigFromFileAndCombineWithOpenAIRequest(modelName, input, cl, startupOptions)
|
||||
if err != nil {
|
||||
return nil, "", false, fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
log.Debug().Msgf("Configuration read: %+v", config)
|
||||
|
||||
// Special Input/Config Handling
|
||||
|
||||
// Allow the user to set custom actions via config file
|
||||
// to be "embedded" in each model - but if they are missing, use defaults.
|
||||
if config.FunctionsConfig.NoActionFunctionName == "" {
|
||||
config.FunctionsConfig.NoActionFunctionName = DEFAULT_NO_ACTION_NAME
|
||||
}
|
||||
if config.FunctionsConfig.NoActionDescriptionName == "" {
|
||||
config.FunctionsConfig.NoActionDescriptionName = DEFAULT_NO_ACTION_DESCRIPTION
|
||||
}
|
||||
|
||||
if input.ResponseFormat.Type == "json_object" {
|
||||
input.Grammar = grammar.JSONBNF
|
||||
}
|
||||
|
||||
processFunctions := len(input.Functions) > 0 && config.ShouldUseFunctions()
|
||||
|
||||
if processFunctions {
|
||||
log.Debug().Msgf("Response needs to process functions")
|
||||
|
||||
noActionGrammar := grammar.Function{
|
||||
Name: config.FunctionsConfig.NoActionFunctionName,
|
||||
Description: config.FunctionsConfig.NoActionDescriptionName,
|
||||
Parameters: map[string]interface{}{
|
||||
"properties": map[string]interface{}{
|
||||
"message": map[string]interface{}{
|
||||
"type": "string",
|
||||
"description": "The message to reply the user with",
|
||||
}},
|
||||
},
|
||||
}
|
||||
|
||||
// Append the no action function
|
||||
funcs = append(funcs, input.Functions...)
|
||||
if !config.FunctionsConfig.DisableNoAction {
|
||||
funcs = append(funcs, noActionGrammar)
|
||||
}
|
||||
|
||||
// Force picking one of the functions by the request
|
||||
if config.FunctionToCall() != "" {
|
||||
funcs = funcs.Select(config.FunctionToCall())
|
||||
}
|
||||
|
||||
// Update input grammar
|
||||
jsStruct := funcs.ToJSONStructure()
|
||||
config.Grammar = jsStruct.Grammar("")
|
||||
} else if input.JSONFunctionGrammarObject != nil {
|
||||
config.Grammar = input.JSONFunctionGrammarObject.Grammar("")
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameters: %+v", config)
|
||||
|
||||
var predInput string
|
||||
|
||||
suppressConfigSystemPrompt := false
|
||||
mess := []string{}
|
||||
for messageIndex, i := range input.Messages {
|
||||
var content string
|
||||
role := i.Role
|
||||
|
||||
// if function call, we might want to customize the role so we can display better that the "assistant called a json action"
|
||||
// if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request
|
||||
if i.FunctionCall != nil && i.Role == "assistant" {
|
||||
roleFn := "assistant_function_call"
|
||||
r := config.Roles[roleFn]
|
||||
if r != "" {
|
||||
role = roleFn
|
||||
}
|
||||
}
|
||||
r := config.Roles[role]
|
||||
contentExists := i.Content != nil && i.StringContent != ""
|
||||
// First attempt to populate content via a chat message specific template
|
||||
if config.TemplateConfig.ChatMessage != "" {
|
||||
chatMessageData := model.ChatMessageTemplateData{
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
Role: r,
|
||||
RoleName: role,
|
||||
Content: i.StringContent,
|
||||
MessageIndex: messageIndex,
|
||||
}
|
||||
templatedChatMessage, err := ml.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData)
|
||||
if err != nil {
|
||||
log.Error().Msgf("error processing message %+v using template \"%s\": %v. Skipping!", chatMessageData, config.TemplateConfig.ChatMessage, err)
|
||||
} else {
|
||||
if templatedChatMessage == "" {
|
||||
log.Warn().Msgf("template \"%s\" produced blank output for %+v. Skipping!", config.TemplateConfig.ChatMessage, chatMessageData)
|
||||
continue // TODO: This continue is here intentionally to skip over the line `mess = append(mess, content)` below, and to prevent the sprintf
|
||||
}
|
||||
log.Debug().Msgf("templated message for chat: %s", templatedChatMessage)
|
||||
content = templatedChatMessage
|
||||
}
|
||||
}
|
||||
// If this model doesn't have such a template, or if that template fails to return a value, template at the message level.
|
||||
if content == "" {
|
||||
if r != "" {
|
||||
if contentExists {
|
||||
content = fmt.Sprint(r, i.StringContent)
|
||||
}
|
||||
if i.FunctionCall != nil {
|
||||
j, err := json.Marshal(i.FunctionCall)
|
||||
if err == nil {
|
||||
if contentExists {
|
||||
content += "\n" + fmt.Sprint(r, " ", string(j))
|
||||
} else {
|
||||
content = fmt.Sprint(r, " ", string(j))
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if contentExists {
|
||||
content = fmt.Sprint(i.StringContent)
|
||||
}
|
||||
if i.FunctionCall != nil {
|
||||
j, err := json.Marshal(i.FunctionCall)
|
||||
if err == nil {
|
||||
if contentExists {
|
||||
content += "\n" + string(j)
|
||||
} else {
|
||||
content = string(j)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Special Handling: System. We care if it was printed at all, not the r branch, so check seperately
|
||||
if contentExists && role == "system" {
|
||||
suppressConfigSystemPrompt = true
|
||||
}
|
||||
}
|
||||
|
||||
mess = append(mess, content)
|
||||
}
|
||||
|
||||
predInput = strings.Join(mess, "\n")
|
||||
log.Debug().Msgf("Prompt (before templating): %s", predInput)
|
||||
|
||||
templateFile := ""
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
||||
templateFile = config.Model
|
||||
}
|
||||
|
||||
if config.TemplateConfig.Chat != "" && !processFunctions {
|
||||
templateFile = config.TemplateConfig.Chat
|
||||
}
|
||||
|
||||
if config.TemplateConfig.Functions != "" && processFunctions {
|
||||
templateFile = config.TemplateConfig.Functions
|
||||
}
|
||||
|
||||
if templateFile != "" {
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
SuppressSystemPrompt: suppressConfigSystemPrompt,
|
||||
Input: predInput,
|
||||
Functions: funcs,
|
||||
})
|
||||
if err == nil {
|
||||
predInput = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
||||
} else {
|
||||
log.Debug().Msgf("Template failed loading: %s", err.Error())
|
||||
}
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Prompt (after templating): %s", predInput)
|
||||
if processFunctions {
|
||||
log.Debug().Msgf("Grammar: %+v", config.Grammar)
|
||||
}
|
||||
|
||||
return config, predInput, processFunctions, nil
|
||||
|
||||
}
|
||||
|
||||
func EditGenerationOpenAIRequest(modelName string, input *schema.OpenAIRequest, cl *services.ConfigLoader, ml *model.ModelLoader, startupOptions *schema.StartupOptions) (*schema.OpenAIResponse, error) {
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
|
||||
binding := func(config *schema.Config) *string {
|
||||
return &config.TemplateConfig.Edit
|
||||
}
|
||||
|
||||
config, err := prepareGenerationOpenAIRequest(binding, modelName, input, cl, ml, startupOptions)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var result []schema.Choice
|
||||
totalTokenUsage := TokenUsage{}
|
||||
|
||||
for _, i := range config.InputStrings {
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.EditPromptTemplate, config.TemplateConfig.Edit, model.PromptTemplateData{
|
||||
Input: i,
|
||||
Instruction: input.Instruction,
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
})
|
||||
if err == nil {
|
||||
i = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", i)
|
||||
}
|
||||
|
||||
r, tokenUsage, err := ComputeChoices(input, i, config, startupOptions, ml, func(s string, c *[]schema.Choice) {
|
||||
*c = append(*c, schema.Choice{Text: s})
|
||||
}, nil)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
totalTokenUsage.Prompt += tokenUsage.Prompt
|
||||
totalTokenUsage.Completion += tokenUsage.Completion
|
||||
|
||||
result = append(result, r...)
|
||||
}
|
||||
|
||||
return &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "edit",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: totalTokenUsage.Prompt,
|
||||
CompletionTokens: totalTokenUsage.Completion,
|
||||
TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion,
|
||||
},
|
||||
}, nil
|
||||
}
|
||||
|
||||
func ChatGenerationOpenAIRequest(modelName string, input *schema.OpenAIRequest, cl *services.ConfigLoader, ml *model.ModelLoader, startupOptions *schema.StartupOptions) (*schema.OpenAIResponse, error) {
|
||||
|
||||
// DEFS
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
|
||||
// Prepare
|
||||
config, predInput, processFunctions, err := prepareChatGenerationOpenAIRequest(modelName, input, cl, ml, startupOptions)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
result, tokenUsage, err := ComputeChoices(input, predInput, config, startupOptions, ml, func(s string, c *[]schema.Choice) {
|
||||
if processFunctions {
|
||||
// As we have to change the result before processing, we can't stream the answer (yet?)
|
||||
ss := map[string]interface{}{}
|
||||
// This prevent newlines to break JSON parsing for clients
|
||||
s = utils.EscapeNewLines(s)
|
||||
json.Unmarshal([]byte(s), &ss)
|
||||
log.Debug().Msgf("Function return: %s %+v", s, ss)
|
||||
|
||||
// The grammar defines the function name as "function", while OpenAI returns "name"
|
||||
func_name := ss["function"]
|
||||
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
|
||||
args := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
|
||||
d, _ := json.Marshal(args)
|
||||
|
||||
ss["arguments"] = string(d)
|
||||
ss["name"] = func_name
|
||||
|
||||
// if do nothing, reply with a message
|
||||
if func_name == config.FunctionsConfig.NoActionFunctionName {
|
||||
log.Debug().Msgf("nothing to do, computing a reply")
|
||||
|
||||
// If there is a message that the LLM already sends as part of the JSON reply, use it
|
||||
arguments := map[string]interface{}{}
|
||||
json.Unmarshal([]byte(d), &arguments)
|
||||
m, exists := arguments["message"]
|
||||
if exists {
|
||||
switch message := m.(type) {
|
||||
case string:
|
||||
if message != "" {
|
||||
log.Debug().Msgf("Reply received from LLM: %s", message)
|
||||
message = Finetune(*config, predInput, message)
|
||||
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
|
||||
|
||||
*c = append(*c, schema.Choice{Message: &schema.Message{Role: "assistant", Content: &message}})
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
|
||||
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
|
||||
// Note: This costs (in term of CPU) another computation
|
||||
config.Grammar = ""
|
||||
images := []string{}
|
||||
for _, m := range input.Messages {
|
||||
images = append(images, m.StringImages...)
|
||||
}
|
||||
predFunc, err := ModelInference(input.Context, predInput, images, ml, *config, startupOptions, nil)
|
||||
if err != nil {
|
||||
log.Error().Msgf("inference error: %s", err.Error())
|
||||
return
|
||||
}
|
||||
|
||||
prediction, err := predFunc()
|
||||
if err != nil {
|
||||
log.Error().Msgf("inference error: %s", err.Error())
|
||||
return
|
||||
}
|
||||
|
||||
fineTunedResponse := Finetune(*config, predInput, prediction.Response)
|
||||
*c = append(*c, schema.Choice{Message: &schema.Message{Role: "assistant", Content: &fineTunedResponse}})
|
||||
} else {
|
||||
// otherwise reply with the function call
|
||||
*c = append(*c, schema.Choice{
|
||||
FinishReason: "function_call",
|
||||
Message: &schema.Message{Role: "assistant", FunctionCall: ss},
|
||||
})
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
|
||||
}, nil)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "chat.completion",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: tokenUsage.Prompt,
|
||||
CompletionTokens: tokenUsage.Completion,
|
||||
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
|
||||
},
|
||||
}, nil
|
||||
|
||||
}
|
||||
|
||||
func CompletionGenerationOpenAIRequest(modelName string, input *schema.OpenAIRequest, cl *services.ConfigLoader, ml *model.ModelLoader, startupOptions *schema.StartupOptions) (*schema.OpenAIResponse, error) {
|
||||
// Prepare
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
|
||||
binding := func(config *schema.Config) *string {
|
||||
return &config.TemplateConfig.Completion
|
||||
}
|
||||
|
||||
config, err := prepareGenerationOpenAIRequest(binding, modelName, input, cl, ml, startupOptions)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var result []schema.Choice
|
||||
|
||||
totalTokenUsage := TokenUsage{}
|
||||
|
||||
for k, i := range config.PromptStrings {
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, config.TemplateConfig.Completion, model.PromptTemplateData{
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
Input: i,
|
||||
})
|
||||
if err == nil {
|
||||
i = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", i)
|
||||
}
|
||||
|
||||
r, tokenUsage, err := ComputeChoices(
|
||||
input, i, config, startupOptions, ml, func(s string, c *[]schema.Choice) {
|
||||
*c = append(*c, schema.Choice{Text: s, FinishReason: "stop", Index: k})
|
||||
}, nil)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
totalTokenUsage.Prompt += tokenUsage.Prompt
|
||||
totalTokenUsage.Completion += tokenUsage.Completion
|
||||
|
||||
result = append(result, r...)
|
||||
}
|
||||
|
||||
return &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "text_completion",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: totalTokenUsage.Prompt,
|
||||
CompletionTokens: totalTokenUsage.Completion,
|
||||
TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion,
|
||||
},
|
||||
}, nil
|
||||
}
|
||||
|
||||
func StreamingChatGenerationOpenAIRequest(modelName string, input *schema.OpenAIRequest, cl *services.ConfigLoader, ml *model.ModelLoader, startupOptions *schema.StartupOptions) (chan schema.OpenAIResponse, error) {
|
||||
|
||||
// DEFS
|
||||
emptyMessage := ""
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
|
||||
// Prepare
|
||||
config, predInput, processFunctions, err := prepareChatGenerationOpenAIRequest(modelName, input, cl, ml, startupOptions)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if processFunctions {
|
||||
// TODO: unused variable means I did something wrong. investigate once stable
|
||||
log.Debug().Msgf("StreamingChatGenerationOpenAIRequest with processFunctions=true for %s?", config.Name)
|
||||
}
|
||||
|
||||
processor := func(s string, req *schema.OpenAIRequest, config *schema.Config, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
ComputeChoices(req, s, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage TokenUsage) bool {
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0}},
|
||||
Object: "chat.completion.chunk",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: usage.Prompt,
|
||||
CompletionTokens: usage.Completion,
|
||||
TotalTokens: usage.Prompt + usage.Completion,
|
||||
},
|
||||
}
|
||||
|
||||
responses <- resp
|
||||
return true
|
||||
})
|
||||
close(responses)
|
||||
}
|
||||
log.Trace().Msg("StreamingChatGenerationOpenAIRequest :: About to create response channel")
|
||||
|
||||
responses := make(chan schema.OpenAIResponse)
|
||||
|
||||
log.Trace().Msg("StreamingChatGenerationOpenAIRequest :: About to start processor goroutine")
|
||||
|
||||
go processor(predInput, input, config, ml, responses)
|
||||
|
||||
log.Trace().Msg("StreamingChatGenerationOpenAIRequest :: DONE! successfully returning to caller!")
|
||||
|
||||
return responses, nil
|
||||
|
||||
}
|
||||
|
||||
func StreamingCompletionGenerationOpenAIRequest(modelName string, input *schema.OpenAIRequest, cl *services.ConfigLoader, ml *model.ModelLoader, startupOptions *schema.StartupOptions) (chan schema.OpenAIResponse, error) {
|
||||
// DEFS
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
|
||||
binding := func(config *schema.Config) *string {
|
||||
return &config.TemplateConfig.Completion
|
||||
}
|
||||
|
||||
// Prepare
|
||||
|
||||
config, err := prepareGenerationOpenAIRequest(binding, modelName, input, cl, ml, startupOptions)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
processor := func(s string, req *schema.OpenAIRequest, config *schema.Config, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
ComputeChoices(req, s, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage TokenUsage) bool {
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{
|
||||
{
|
||||
Index: 0,
|
||||
Text: s,
|
||||
},
|
||||
},
|
||||
Object: "text_completion",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: usage.Prompt,
|
||||
CompletionTokens: usage.Completion,
|
||||
TotalTokens: usage.Prompt + usage.Completion,
|
||||
},
|
||||
}
|
||||
log.Debug().Msgf("Sending goroutine: %s", s)
|
||||
|
||||
responses <- resp
|
||||
return true
|
||||
})
|
||||
close(responses)
|
||||
}
|
||||
|
||||
if len(config.PromptStrings) > 1 {
|
||||
return nil, errors.New("cannot handle more than 1 `PromptStrings` when Streaming")
|
||||
|
||||
}
|
||||
|
||||
predInput := config.PromptStrings[0]
|
||||
|
||||
//A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, config.TemplateConfig.Completion, model.PromptTemplateData{
|
||||
Input: predInput,
|
||||
})
|
||||
if err == nil {
|
||||
predInput = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
||||
}
|
||||
|
||||
log.Trace().Msg("StreamingCompletionGenerationOpenAIRequest :: About to create response channel")
|
||||
|
||||
responses := make(chan schema.OpenAIResponse)
|
||||
|
||||
log.Trace().Msg("StreamingCompletionGenerationOpenAIRequest :: About to start processor goroutine")
|
||||
|
||||
go processor(predInput, input, config, ml, responses)
|
||||
|
||||
log.Trace().Msg("StreamingCompletionGenerationOpenAIRequest :: DONE! successfully returning to caller!")
|
||||
|
||||
return responses, nil
|
||||
}
|
|
@ -1,125 +0,0 @@
|
|||
package backend
|
||||
|
||||
import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/schema"
|
||||
)
|
||||
|
||||
func modelOpts(c schema.Config, o *schema.StartupOptions, opts []model.Option) []model.Option {
|
||||
if o.SingleBackend {
|
||||
opts = append(opts, model.WithSingleActiveBackend())
|
||||
}
|
||||
|
||||
if o.ParallelBackendRequests {
|
||||
opts = append(opts, model.EnableParallelRequests)
|
||||
}
|
||||
|
||||
if c.GRPC.Attempts != 0 {
|
||||
opts = append(opts, model.WithGRPCAttempts(c.GRPC.Attempts))
|
||||
}
|
||||
|
||||
if c.GRPC.AttemptsSleepTime != 0 {
|
||||
opts = append(opts, model.WithGRPCAttemptsDelay(c.GRPC.AttemptsSleepTime))
|
||||
}
|
||||
|
||||
for k, v := range o.ExternalGRPCBackends {
|
||||
opts = append(opts, model.WithExternalBackend(k, v))
|
||||
}
|
||||
|
||||
return opts
|
||||
}
|
||||
|
||||
func gRPCModelOpts(c schema.Config) *pb.ModelOptions {
|
||||
b := 512
|
||||
if c.Batch != 0 {
|
||||
b = c.Batch
|
||||
}
|
||||
|
||||
return &pb.ModelOptions{
|
||||
ContextSize: int32(c.ContextSize),
|
||||
Seed: int32(c.Seed),
|
||||
NBatch: int32(b),
|
||||
NoMulMatQ: c.NoMulMatQ,
|
||||
CUDA: c.CUDA, // diffusers, transformers
|
||||
DraftModel: c.DraftModel,
|
||||
AudioPath: c.VallE.AudioPath,
|
||||
Quantization: c.Quantization,
|
||||
MMProj: c.MMProj,
|
||||
YarnExtFactor: c.YarnExtFactor,
|
||||
YarnAttnFactor: c.YarnAttnFactor,
|
||||
YarnBetaFast: c.YarnBetaFast,
|
||||
YarnBetaSlow: c.YarnBetaSlow,
|
||||
LoraAdapter: c.LoraAdapter,
|
||||
LoraBase: c.LoraBase,
|
||||
LoraScale: c.LoraScale,
|
||||
NGQA: c.NGQA,
|
||||
RMSNormEps: c.RMSNormEps,
|
||||
F16Memory: c.F16,
|
||||
MLock: c.MMlock,
|
||||
RopeFreqBase: c.RopeFreqBase,
|
||||
RopeFreqScale: c.RopeFreqScale,
|
||||
NUMA: c.NUMA,
|
||||
Embeddings: c.Embeddings,
|
||||
LowVRAM: c.LowVRAM,
|
||||
NGPULayers: int32(c.NGPULayers),
|
||||
MMap: c.MMap,
|
||||
MainGPU: c.MainGPU,
|
||||
Threads: int32(c.Threads),
|
||||
TensorSplit: c.TensorSplit,
|
||||
// AutoGPTQ
|
||||
ModelBaseName: c.AutoGPTQ.ModelBaseName,
|
||||
Device: c.AutoGPTQ.Device,
|
||||
UseTriton: c.AutoGPTQ.Triton,
|
||||
UseFastTokenizer: c.AutoGPTQ.UseFastTokenizer,
|
||||
// RWKV
|
||||
Tokenizer: c.Tokenizer,
|
||||
}
|
||||
}
|
||||
|
||||
func gRPCPredictOpts(c schema.Config, modelPath string) *pb.PredictOptions {
|
||||
promptCachePath := ""
|
||||
if c.PromptCachePath != "" {
|
||||
p := filepath.Join(modelPath, c.PromptCachePath)
|
||||
os.MkdirAll(filepath.Dir(p), 0755)
|
||||
promptCachePath = p
|
||||
}
|
||||
return &pb.PredictOptions{
|
||||
Temperature: float32(c.Temperature),
|
||||
TopP: float32(c.TopP),
|
||||
NDraft: c.NDraft,
|
||||
TopK: int32(c.TopK),
|
||||
Tokens: int32(c.Maxtokens),
|
||||
Threads: int32(c.Threads),
|
||||
PromptCacheAll: c.PromptCacheAll,
|
||||
PromptCacheRO: c.PromptCacheRO,
|
||||
PromptCachePath: promptCachePath,
|
||||
F16KV: c.F16,
|
||||
DebugMode: c.Debug,
|
||||
Grammar: c.Grammar,
|
||||
NegativePromptScale: c.NegativePromptScale,
|
||||
RopeFreqBase: c.RopeFreqBase,
|
||||
RopeFreqScale: c.RopeFreqScale,
|
||||
NegativePrompt: c.NegativePrompt,
|
||||
Mirostat: int32(c.LLMConfig.Mirostat),
|
||||
MirostatETA: float32(c.LLMConfig.MirostatETA),
|
||||
MirostatTAU: float32(c.LLMConfig.MirostatTAU),
|
||||
Debug: c.Debug,
|
||||
StopPrompts: c.StopWords,
|
||||
Repeat: int32(c.RepeatPenalty),
|
||||
NKeep: int32(c.Keep),
|
||||
Batch: int32(c.Batch),
|
||||
IgnoreEOS: c.IgnoreEOS,
|
||||
Seed: int32(c.Seed),
|
||||
FrequencyPenalty: float32(c.FrequencyPenalty),
|
||||
MLock: c.MMlock,
|
||||
MMap: c.MMap,
|
||||
MainGPU: c.MainGPU,
|
||||
TensorSplit: c.TensorSplit,
|
||||
TailFreeSamplingZ: float32(c.TFZ),
|
||||
TypicalP: float32(c.TypicalP),
|
||||
}
|
||||
}
|
|
@ -1,52 +0,0 @@
|
|||
package backend
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/schema"
|
||||
)
|
||||
|
||||
func ModelTranscription(audio, language string, loader *model.ModelLoader, c schema.Config, o *schema.StartupOptions) (*schema.WhisperResult, error) {
|
||||
|
||||
opts := modelOpts(c, o, []model.Option{
|
||||
model.WithBackendString(model.WhisperBackend),
|
||||
model.WithModel(c.Model),
|
||||
model.WithContext(o.Context),
|
||||
model.WithThreads(uint32(c.Threads)),
|
||||
model.WithAssetDir(o.AssetsDestination),
|
||||
model.WithExternalBackends(o.ExternalGRPCBackends, false),
|
||||
})
|
||||
|
||||
whisperModel, err := loader.BackendLoader(opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if whisperModel == nil {
|
||||
return nil, fmt.Errorf("could not load whisper model")
|
||||
}
|
||||
|
||||
return whisperModel.AudioTranscription(context.Background(), &proto.TranscriptRequest{
|
||||
Dst: audio,
|
||||
Language: language,
|
||||
Threads: uint32(c.Threads),
|
||||
})
|
||||
}
|
||||
|
||||
func TranscriptionOpenAIRequest(modelName string, input *schema.OpenAIRequest, audioFilePath string, cl *services.ConfigLoader, ml *model.ModelLoader, startupOptions *schema.StartupOptions) (*schema.WhisperResult, error) {
|
||||
config, input, err := ReadConfigFromFileAndCombineWithOpenAIRequest(modelName, input, cl, startupOptions)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
tr, err := ModelTranscription(audioFilePath, input.Language, ml, *config, startupOptions)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return tr, nil
|
||||
}
|
|
@ -1,79 +0,0 @@
|
|||
package backend
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"os"
|
||||
"path/filepath"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
)
|
||||
|
||||
func generateUniqueFileName(dir, baseName, ext string) string {
|
||||
counter := 1
|
||||
fileName := baseName + ext
|
||||
|
||||
for {
|
||||
filePath := filepath.Join(dir, fileName)
|
||||
_, err := os.Stat(filePath)
|
||||
if os.IsNotExist(err) {
|
||||
return fileName
|
||||
}
|
||||
|
||||
counter++
|
||||
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
|
||||
}
|
||||
}
|
||||
|
||||
func ModelTTS(backend, text, modelFile string, loader *model.ModelLoader, o *schema.StartupOptions) (string, *proto.Result, error) {
|
||||
bb := backend
|
||||
if bb == "" {
|
||||
bb = model.PiperBackend
|
||||
}
|
||||
opts := modelOpts(schema.Config{}, o, []model.Option{
|
||||
model.WithBackendString(bb),
|
||||
model.WithModel(modelFile),
|
||||
model.WithContext(o.Context),
|
||||
model.WithAssetDir(o.AssetsDestination),
|
||||
model.WithExternalBackends(o.ExternalGRPCBackends, false),
|
||||
})
|
||||
piperModel, err := loader.BackendLoader(opts...)
|
||||
if err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
|
||||
if piperModel == nil {
|
||||
return "", nil, fmt.Errorf("could not load piper model")
|
||||
}
|
||||
|
||||
if err := os.MkdirAll(o.AudioDir, 0755); err != nil {
|
||||
return "", nil, fmt.Errorf("failed creating audio directory: %s", err)
|
||||
}
|
||||
|
||||
fileName := generateUniqueFileName(o.AudioDir, "piper", ".wav")
|
||||
filePath := filepath.Join(o.AudioDir, fileName)
|
||||
|
||||
// If the model file is not empty, we pass it joined with the model path
|
||||
modelPath := ""
|
||||
if modelFile != "" {
|
||||
if bb != model.TransformersMusicGen {
|
||||
modelPath = filepath.Join(o.ModelPath, modelFile)
|
||||
if err := utils.VerifyPath(modelPath, o.ModelPath); err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
} else {
|
||||
modelPath = modelFile
|
||||
}
|
||||
}
|
||||
|
||||
res, err := piperModel.TTS(context.Background(), &proto.TTSRequest{
|
||||
Text: text,
|
||||
Model: modelPath,
|
||||
Dst: filePath,
|
||||
})
|
||||
|
||||
return filePath, res, err
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue