mirror of
https://github.com/mudler/LocalAI.git
synced 2025-05-20 02:24:59 +00:00
210 lines
5.4 KiB
Go
210 lines
5.4 KiB
Go
package backend
|
|
|
|
import (
|
|
"encoding/base64"
|
|
"fmt"
|
|
"os"
|
|
"path"
|
|
"path/filepath"
|
|
"strconv"
|
|
"strings"
|
|
"time"
|
|
|
|
"github.com/go-skynet/LocalAI/core/services"
|
|
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
|
"github.com/go-skynet/LocalAI/pkg/model"
|
|
"github.com/go-skynet/LocalAI/pkg/schema"
|
|
"github.com/go-skynet/LocalAI/pkg/utils"
|
|
"github.com/google/uuid"
|
|
"github.com/rs/zerolog/log"
|
|
)
|
|
|
|
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, c schema.Config, o *schema.StartupOptions) (func() error, error) {
|
|
|
|
opts := modelOpts(c, o, []model.Option{
|
|
model.WithBackendString(c.Backend),
|
|
model.WithAssetDir(o.AssetsDestination),
|
|
model.WithThreads(uint32(c.Threads)),
|
|
model.WithContext(o.Context),
|
|
model.WithModel(c.Model),
|
|
model.WithLoadGRPCLoadModelOpts(&proto.ModelOptions{
|
|
CUDA: c.CUDA || c.Diffusers.CUDA,
|
|
SchedulerType: c.Diffusers.SchedulerType,
|
|
PipelineType: c.Diffusers.PipelineType,
|
|
CFGScale: c.Diffusers.CFGScale,
|
|
LoraAdapter: c.LoraAdapter,
|
|
LoraScale: c.LoraScale,
|
|
LoraBase: c.LoraBase,
|
|
IMG2IMG: c.Diffusers.IMG2IMG,
|
|
CLIPModel: c.Diffusers.ClipModel,
|
|
CLIPSubfolder: c.Diffusers.ClipSubFolder,
|
|
CLIPSkip: int32(c.Diffusers.ClipSkip),
|
|
ControlNet: c.Diffusers.ControlNet,
|
|
}),
|
|
model.WithExternalBackends(o.ExternalGRPCBackends, false),
|
|
})
|
|
|
|
inferenceModel, err := loader.BackendLoader(
|
|
opts...,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
fn := func() error {
|
|
_, err := inferenceModel.GenerateImage(
|
|
o.Context,
|
|
&proto.GenerateImageRequest{
|
|
Height: int32(height),
|
|
Width: int32(width),
|
|
Mode: int32(mode),
|
|
Step: int32(step),
|
|
Seed: int32(seed),
|
|
CLIPSkip: int32(c.Diffusers.ClipSkip),
|
|
PositivePrompt: positive_prompt,
|
|
NegativePrompt: negative_prompt,
|
|
Dst: dst,
|
|
Src: src,
|
|
EnableParameters: c.Diffusers.EnableParameters,
|
|
})
|
|
return err
|
|
}
|
|
|
|
return fn, nil
|
|
}
|
|
|
|
func ImageGenerationOpenAIRequest(modelName string, input *schema.OpenAIRequest, cl *services.ConfigLoader, ml *model.ModelLoader, startupOptions *schema.StartupOptions) (*schema.OpenAIResponse, error) {
|
|
id := uuid.New().String()
|
|
created := int(time.Now().Unix())
|
|
|
|
if modelName == "" {
|
|
modelName = model.StableDiffusionBackend
|
|
}
|
|
log.Debug().Msgf("Loading model: %+v", modelName)
|
|
|
|
config, input, err := ReadConfigFromFileAndCombineWithOpenAIRequest(modelName, input, cl, startupOptions)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("failed reading parameters from request: %w", err)
|
|
}
|
|
|
|
src := ""
|
|
if input.File != "" {
|
|
if strings.HasPrefix(input.File, "http://") || strings.HasPrefix(input.File, "https://") {
|
|
src, err = utils.CreateTempFileFromUrl(input.File, "", "image-src")
|
|
if err != nil {
|
|
return nil, fmt.Errorf("failed downloading file:%w", err)
|
|
}
|
|
} else {
|
|
src, err = utils.CreateTempFileFromBase64(input.File, "", "base64-image-src")
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error creating temporary image source file: %w", err)
|
|
}
|
|
}
|
|
}
|
|
|
|
log.Debug().Msgf("Parameter Config: %+v", config)
|
|
|
|
switch config.Backend {
|
|
case "stablediffusion":
|
|
config.Backend = model.StableDiffusionBackend
|
|
case "tinydream":
|
|
config.Backend = model.TinyDreamBackend
|
|
case "":
|
|
config.Backend = model.StableDiffusionBackend
|
|
}
|
|
|
|
sizeParts := strings.Split(input.Size, "x")
|
|
if len(sizeParts) != 2 {
|
|
return nil, fmt.Errorf("invalid value for 'size'")
|
|
}
|
|
width, err := strconv.Atoi(sizeParts[0])
|
|
if err != nil {
|
|
return nil, fmt.Errorf("invalid value for 'size'")
|
|
}
|
|
height, err := strconv.Atoi(sizeParts[1])
|
|
if err != nil {
|
|
return nil, fmt.Errorf("invalid value for 'size'")
|
|
}
|
|
|
|
b64JSON := false
|
|
if input.ResponseFormat.Type == "b64_json" {
|
|
b64JSON = true
|
|
}
|
|
// src and clip_skip
|
|
var result []schema.Item
|
|
for _, i := range config.PromptStrings {
|
|
n := input.N
|
|
if input.N == 0 {
|
|
n = 1
|
|
}
|
|
for j := 0; j < n; j++ {
|
|
prompts := strings.Split(i, "|")
|
|
positive_prompt := prompts[0]
|
|
negative_prompt := ""
|
|
if len(prompts) > 1 {
|
|
negative_prompt = prompts[1]
|
|
}
|
|
|
|
mode := 0
|
|
step := config.Step
|
|
if step == 0 {
|
|
step = 15
|
|
}
|
|
|
|
if input.Mode != 0 {
|
|
mode = input.Mode
|
|
}
|
|
|
|
if input.Step != 0 {
|
|
step = input.Step
|
|
}
|
|
|
|
tempDir := ""
|
|
if !b64JSON {
|
|
tempDir = startupOptions.ImageDir
|
|
}
|
|
// Create a temporary file
|
|
outputFile, err := os.CreateTemp(tempDir, "b64")
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
outputFile.Close()
|
|
output := outputFile.Name() + ".png"
|
|
// Rename the temporary file
|
|
err = os.Rename(outputFile.Name(), output)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
fn, err := ImageGeneration(height, width, mode, step, input.Seed, positive_prompt, negative_prompt, src, output, ml, *config, startupOptions)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if err := fn(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
item := &schema.Item{}
|
|
|
|
if b64JSON {
|
|
defer os.RemoveAll(output)
|
|
data, err := os.ReadFile(output)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
item.B64JSON = base64.StdEncoding.EncodeToString(data)
|
|
} else {
|
|
base := filepath.Base(output)
|
|
item.URL = path.Join(startupOptions.ImageDir, base)
|
|
}
|
|
|
|
result = append(result, *item)
|
|
}
|
|
}
|
|
|
|
return &schema.OpenAIResponse{
|
|
ID: id,
|
|
Created: created,
|
|
Data: result,
|
|
}, nil
|
|
}
|