This commit is contained in:
Bowen 2025-04-15 20:42:53 +00:00 committed by GitHub
commit abf3963a91
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 792 additions and 0 deletions

11
extra/grpc/sam/Makefile Normal file
View file

@ -0,0 +1,11 @@
.PONY: sam
sam:
@echo "Creating virtual environment..."
@conda env create --name sam --file sam.yml
@echo "Virtual environment created."
.PONY: run
run:
@echo "Running sam..."
bash run.sh
@echo "sam run."

5
extra/grpc/sam/README.md Normal file
View file

@ -0,0 +1,5 @@
# Creating a separate environment for the sam project
```
make sam
```

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1,363 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.TokenizeString = channel.unary_unary(
'/backend.Backend/TokenizeString',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.TokenizationResponse.FromString,
)
self.Status = channel.unary_unary(
'/backend.Backend/Status',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.StatusResponse.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TokenizeString(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Status(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'TokenizeString': grpc.unary_unary_rpc_method_handler(
servicer.TokenizeString,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
),
'Status': grpc.unary_unary_rpc_method_handler(
servicer.Status,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.StatusResponse.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TokenizeString(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.TokenizationResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Status(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.StatusResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

13
extra/grpc/sam/run.sh Executable file
View file

@ -0,0 +1,13 @@
#!/bin/bash
##
## A bash script wrapper that runs the sam server with conda
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate sam
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
python $DIR/sam.py $@

264
extra/grpc/sam/sam.py Normal file
View file

@ -0,0 +1,264 @@
#! /usr/bin/env python3
from concurrent import futures
import argparse
from enum import Enum
import os
import signal
import sys
import os
import time
import backend_pb2
import backend_pb2_grpc
import grpc
import torch
from functools import partial
from segment_anything_hq import SamAutomaticMaskGenerator
from segment_anything_hq.modeling import ImageEncoderViT, MaskDecoderHQ, PromptEncoder, Sam, TwoWayTransformer, TinyViT
import matplotlib.pyplot as plt
import numpy as np
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
PROMT_EMBED_DIM=256
IMAGE_SIZE = 1024
VIT_PATCH_SIZE=16
# Enum for sam model type
class SamModelType(str, Enum):
default = "sam_hq_vit_h.pth"
vit_h = "sam_hq_vit_h.pth"
vit_l = "sam_hq_vit_l.pth"
vit_b = "sam_hq_vit_b.pth"
vit_tiny = "sam_hq_vit_tiny.pth"
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
A gRPC servicer for the backend service.
"""
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", "utf-8"))
def LoadModel(self, request, context):
try:
model_name = request.model_name
if model_name not in SamModelType.__dict__.keys():
raise Exception(f"Model name {model_name} not found in {SamModelType.__dict__.keys()}")
model_path = request.model_path
if not os.path.exists(model_path):
raise Exception(f"Model path {model_path} does not exist")
match model_name:
case SamModelType.default:
sam = _build_sam_vit_h(checkpoint=model_path)
case SamModelType.vit_h:
sam = _build_sam_vit_h(checkpoint=model_path)
case SamModelType.vit_l:
sam = _build_sam_vit_l(checkpoint=model_path)
case SamModelType.vit_b:
sam = _build_sam_vit_b(checkpoint=model_path)
case SamModelType.vit_tiny:
sam = _build_sam_vit_tiny(checkpoint=model_path)
case _:
raise Exception(f"Model name {model_name} not found in {SamModelType.__dict__.keys()}")
# TODO No sure if this is the right way to do it
self.model=sam
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True, message="Model loaded successfully")
def GenerateImage(self, request, context):
try:
mask_generator=SamAutomaticMaskGenerator(
model=self.model,
points_per_side=32,
pred_iou_thresh=0.8,
stability_score_thresh=0.9,
crop_n_layers=1,
crop_n_points_downscale_factor=2,
min_mask_region_area=100
)
masks=mask_generator.generate_mask(request.image)
masks_to_image(masks, request)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True, message="Image generated successfully")
def PredictStream(self, request, context):
return super().PredictStream(request, context)
def _constrcut_sam(encoder_embed_dim,encoder_depth,encoder_num_heads,encoder_global_attn_indexes,checkpoint=None):
image_embedding_size = IMAGE_SIZE // VIT_PATCH_SIZE
sam = Sam(
image_encoder=ImageEncoderViT(
depth=encoder_depth,
embed_dim=encoder_embed_dim,
img_size=IMAGE_SIZE,
mlp_ratio=4,
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
num_heads=encoder_num_heads,
patch_size=VIT_PATCH_SIZE,
qkv_bias=True,
use_rel_pos=True,
global_attn_indexes=encoder_global_attn_indexes,
window_size=14,
out_chans=PROMT_EMBED_DIM,
),
prompt_encoder=PromptEncoder(
embed_dim=PROMT_EMBED_DIM,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(IMAGE_SIZE, IMAGE_SIZE),
mask_in_chans=16,
),
mask_decoder=MaskDecoderHQ(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=PROMT_EMBED_DIM,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=PROMT_EMBED_DIM,
iou_head_depth=3,
iou_head_hidden_dim=256,
vit_dim=encoder_embed_dim,
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
sam.eval()
if checkpoint is not None:
with open(checkpoint, "rb") as f:
device = "cuda" if torch.cuda.is_available() else "cpu"
state_dict = torch.load(f, map_location=device)
info = sam.load_state_dict(state_dict, strict=False)
print(info)
for n, p in sam.named_parameters():
if 'hf_token' not in n and 'hf_mlp' not in n and 'compress_vit_feat' not in n and 'embedding_encoder' not in n and 'embedding_maskfeature' not in n:
p.requires_grad = False
return sam
def _build_sam_vit_h(checkpoint=None):
return _constrcut_sam(encoder_embed_dim=1280,encoder_depth=32,encoder_num_heads=16,encoder_global_attn_indexes=[7,15,23,31],checkpoint=checkpoint)
def _build_sam_vit_l(checkpoint=None):
return _constrcut_sam(encoder_embed_dim=1024,encoder_depth=24,encoder_num_heads=16,encoder_global_attn_indexes=[5,11,17,23],checkpoint=checkpoint)
def _build_sam_vit_b(checkpoint=None):
return _constrcut_sam(encoder_embed_dim=768,encoder_depth=12,encoder_num_heads=12,encoder_global_attn_indexes=[2,5,8,11],checkpoint=checkpoint)
def _build_sam_vit_tiny(checkpoint=None):
image_embedding_size = IMAGE_SIZE // VIT_PATCH_SIZE
mobile_sam = Sam(
image_encoder=TinyViT(img_size=1024, in_chans=3, num_classes=1000,
embed_dims=[64, 128, 160, 320],
depths=[2, 2, 6, 2],
num_heads=[2, 4, 5, 10],
window_sizes=[7, 7, 14, 7],
mlp_ratio=4.,
drop_rate=0.,
drop_path_rate=0.0,
use_checkpoint=False,
mbconv_expand_ratio=4.0,
local_conv_size=3,
layer_lr_decay=0.8
),
prompt_encoder=PromptEncoder(
embed_dim=PROMT_EMBED_DIM,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(IMAGE_SIZE, IMAGE_SIZE),
mask_in_chans=16,
),
mask_decoder=MaskDecoderHQ(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=PROMT_EMBED_DIM,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=PROMT_EMBED_DIM,
iou_head_depth=3,
iou_head_hidden_dim=256,
vit_dim=160,
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
mobile_sam.eval()
if checkpoint is not None:
with open(checkpoint, "rb") as f:
device = "cuda" if torch.cuda.is_available() else "cpu"
state_dict = torch.load(f, map_location=device)
info = mobile_sam.load_state_dict(state_dict, strict=False)
print(info)
for n, p in mobile_sam.named_parameters():
if 'hf_token' not in n and 'hf_mlp' not in n and 'compress_vit_feat' not in n and 'embedding_encoder' not in n and 'embedding_maskfeature' not in n:
p.requires_grad = False
return mobile_sam
def masks_to_image(anns, request):
if len(anns)==0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
img[:,:,3] = 0
for ann in sorted_anns:
m = ann['segmentation']
color_mask = np.concatenate([np.random.random(3), [0.35]])
img[m] = color_mask
ax.imshow(img)
plt.axis('off')
plt.imsave(request.dst, img)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

75
extra/grpc/sam/sam.yml Normal file
View file

@ -0,0 +1,75 @@
name: sam
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- bzip2=1.0.8=h7b6447c_0
- ca-certificates=2023.08.22=h06a4308_0
- ld_impl_linux-64=2.38=h1181459_1
- libffi=3.4.4=h6a678d5_0
- libgcc-ng=11.2.0=h1234567_1
- libgomp=11.2.0=h1234567_1
- libstdcxx-ng=11.2.0=h1234567_1
- libuuid=1.41.5=h5eee18b_0
- ncurses=6.4=h6a678d5_0
- openssl=3.0.12=h7f8727e_0
- pip=23.3=py311h06a4308_0
- python=3.11.5=h955ad1f_0
- readline=8.2=h5eee18b_0
- setuptools=68.0.0=py311h06a4308_0
- sqlite=3.41.2=h5eee18b_0
- tk=8.6.12=h1ccaba5_0
- tzdata=2023c=h04d1e81_0
- wheel=0.41.2=py311h06a4308_0
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- certifi==2023.7.22
- charset-normalizer==3.3.2
- contourpy==1.2.0
- cycler==0.12.1
- filelock==3.13.1
- fonttools==4.44.0
- fsspec==2023.10.0
- grpcio==1.59.2
- huggingface-hub==0.18.0
- idna==3.4
- jinja2==3.1.2
- kiwisolver==1.4.5
- markupsafe==2.1.3
- matplotlib==3.8.1
- mpmath==1.3.0
- networkx==3.2.1
- numpy==1.26.1
- nvidia-cublas-cu12==12.1.3.1
- nvidia-cuda-cupti-cu12==12.1.105
- nvidia-cuda-nvrtc-cu12==12.1.105
- nvidia-cuda-runtime-cu12==12.1.105
- nvidia-cudnn-cu12==8.9.2.26
- nvidia-cufft-cu12==11.0.2.54
- nvidia-curand-cu12==10.3.2.106
- nvidia-cusolver-cu12==11.4.5.107
- nvidia-cusparse-cu12==12.1.0.106
- nvidia-nccl-cu12==2.18.1
- nvidia-nvjitlink-cu12==12.3.52
- nvidia-nvtx-cu12==12.1.105
- packaging==23.2
- pillow==10.1.0
- protobuf==4.25.0
- pyparsing==3.1.1
- python-dateutil==2.8.2
- pyyaml==6.0.1
- requests==2.31.0
- safetensors==0.4.0
- segment-anything-hq==0.3
- six==1.16.0
- sympy==1.12
- timm==0.9.10
- torch==2.1.0
- torchvision==0.16.0
- tqdm==4.66.1
- triton==2.1.0
- typing-extensions==4.8.0
- urllib3==2.0.7
prefix: /opt/conda/envs/sam