mirror of
https://github.com/mudler/LocalAI.git
synced 2025-05-28 22:44:59 +00:00
264 lines
No EOL
9.5 KiB
Python
264 lines
No EOL
9.5 KiB
Python
#! /usr/bin/env python3
|
|
|
|
from concurrent import futures
|
|
import argparse
|
|
from enum import Enum
|
|
import os
|
|
import signal
|
|
import sys
|
|
import os
|
|
import time
|
|
|
|
import backend_pb2
|
|
import backend_pb2_grpc
|
|
|
|
import grpc
|
|
|
|
import torch
|
|
from functools import partial
|
|
from segment_anything_hq import SamAutomaticMaskGenerator
|
|
from segment_anything_hq.modeling import ImageEncoderViT, MaskDecoderHQ, PromptEncoder, Sam, TwoWayTransformer, TinyViT
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
|
PROMT_EMBED_DIM=256
|
|
IMAGE_SIZE = 1024
|
|
VIT_PATCH_SIZE=16
|
|
|
|
# Enum for sam model type
|
|
class SamModelType(str, Enum):
|
|
default = "sam_hq_vit_h.pth"
|
|
vit_h = "sam_hq_vit_h.pth"
|
|
vit_l = "sam_hq_vit_l.pth"
|
|
vit_b = "sam_hq_vit_b.pth"
|
|
vit_tiny = "sam_hq_vit_tiny.pth"
|
|
|
|
|
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
|
|
|
|
|
# Implement the BackendServicer class with the service methods
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
|
"""
|
|
A gRPC servicer for the backend service.
|
|
"""
|
|
|
|
def Health(self, request, context):
|
|
return backend_pb2.Reply(message=bytes("OK", "utf-8"))
|
|
|
|
def LoadModel(self, request, context):
|
|
try:
|
|
model_name = request.model_name
|
|
if model_name not in SamModelType.__dict__.keys():
|
|
raise Exception(f"Model name {model_name} not found in {SamModelType.__dict__.keys()}")
|
|
|
|
model_path = request.model_path
|
|
if not os.path.exists(model_path):
|
|
raise Exception(f"Model path {model_path} does not exist")
|
|
|
|
match model_name:
|
|
case SamModelType.default:
|
|
sam = _build_sam_vit_h(checkpoint=model_path)
|
|
case SamModelType.vit_h:
|
|
sam = _build_sam_vit_h(checkpoint=model_path)
|
|
case SamModelType.vit_l:
|
|
sam = _build_sam_vit_l(checkpoint=model_path)
|
|
case SamModelType.vit_b:
|
|
sam = _build_sam_vit_b(checkpoint=model_path)
|
|
case SamModelType.vit_tiny:
|
|
sam = _build_sam_vit_tiny(checkpoint=model_path)
|
|
case _:
|
|
raise Exception(f"Model name {model_name} not found in {SamModelType.__dict__.keys()}")
|
|
# TODO No sure if this is the right way to do it
|
|
self.model=sam
|
|
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
return backend_pb2.Result(success=True, message="Model loaded successfully")
|
|
|
|
def GenerateImage(self, request, context):
|
|
try:
|
|
mask_generator=SamAutomaticMaskGenerator(
|
|
model=self.model,
|
|
points_per_side=32,
|
|
pred_iou_thresh=0.8,
|
|
stability_score_thresh=0.9,
|
|
crop_n_layers=1,
|
|
crop_n_points_downscale_factor=2,
|
|
min_mask_region_area=100
|
|
)
|
|
|
|
masks=mask_generator.generate_mask(request.image)
|
|
masks_to_image(masks, request)
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
return backend_pb2.Result(success=True, message="Image generated successfully")
|
|
|
|
def PredictStream(self, request, context):
|
|
return super().PredictStream(request, context)
|
|
|
|
def _constrcut_sam(encoder_embed_dim,encoder_depth,encoder_num_heads,encoder_global_attn_indexes,checkpoint=None):
|
|
image_embedding_size = IMAGE_SIZE // VIT_PATCH_SIZE
|
|
sam = Sam(
|
|
image_encoder=ImageEncoderViT(
|
|
depth=encoder_depth,
|
|
embed_dim=encoder_embed_dim,
|
|
img_size=IMAGE_SIZE,
|
|
mlp_ratio=4,
|
|
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
|
num_heads=encoder_num_heads,
|
|
patch_size=VIT_PATCH_SIZE,
|
|
qkv_bias=True,
|
|
use_rel_pos=True,
|
|
global_attn_indexes=encoder_global_attn_indexes,
|
|
window_size=14,
|
|
out_chans=PROMT_EMBED_DIM,
|
|
),
|
|
prompt_encoder=PromptEncoder(
|
|
embed_dim=PROMT_EMBED_DIM,
|
|
image_embedding_size=(image_embedding_size, image_embedding_size),
|
|
input_image_size=(IMAGE_SIZE, IMAGE_SIZE),
|
|
mask_in_chans=16,
|
|
),
|
|
mask_decoder=MaskDecoderHQ(
|
|
num_multimask_outputs=3,
|
|
transformer=TwoWayTransformer(
|
|
depth=2,
|
|
embedding_dim=PROMT_EMBED_DIM,
|
|
mlp_dim=2048,
|
|
num_heads=8,
|
|
),
|
|
transformer_dim=PROMT_EMBED_DIM,
|
|
iou_head_depth=3,
|
|
iou_head_hidden_dim=256,
|
|
vit_dim=encoder_embed_dim,
|
|
),
|
|
pixel_mean=[123.675, 116.28, 103.53],
|
|
pixel_std=[58.395, 57.12, 57.375],
|
|
)
|
|
|
|
sam.eval()
|
|
if checkpoint is not None:
|
|
with open(checkpoint, "rb") as f:
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
state_dict = torch.load(f, map_location=device)
|
|
info = sam.load_state_dict(state_dict, strict=False)
|
|
print(info)
|
|
for n, p in sam.named_parameters():
|
|
if 'hf_token' not in n and 'hf_mlp' not in n and 'compress_vit_feat' not in n and 'embedding_encoder' not in n and 'embedding_maskfeature' not in n:
|
|
p.requires_grad = False
|
|
|
|
return sam
|
|
|
|
def _build_sam_vit_h(checkpoint=None):
|
|
return _constrcut_sam(encoder_embed_dim=1280,encoder_depth=32,encoder_num_heads=16,encoder_global_attn_indexes=[7,15,23,31],checkpoint=checkpoint)
|
|
|
|
def _build_sam_vit_l(checkpoint=None):
|
|
return _constrcut_sam(encoder_embed_dim=1024,encoder_depth=24,encoder_num_heads=16,encoder_global_attn_indexes=[5,11,17,23],checkpoint=checkpoint)
|
|
|
|
def _build_sam_vit_b(checkpoint=None):
|
|
return _constrcut_sam(encoder_embed_dim=768,encoder_depth=12,encoder_num_heads=12,encoder_global_attn_indexes=[2,5,8,11],checkpoint=checkpoint)
|
|
|
|
def _build_sam_vit_tiny(checkpoint=None):
|
|
image_embedding_size = IMAGE_SIZE // VIT_PATCH_SIZE
|
|
mobile_sam = Sam(
|
|
image_encoder=TinyViT(img_size=1024, in_chans=3, num_classes=1000,
|
|
embed_dims=[64, 128, 160, 320],
|
|
depths=[2, 2, 6, 2],
|
|
num_heads=[2, 4, 5, 10],
|
|
window_sizes=[7, 7, 14, 7],
|
|
mlp_ratio=4.,
|
|
drop_rate=0.,
|
|
drop_path_rate=0.0,
|
|
use_checkpoint=False,
|
|
mbconv_expand_ratio=4.0,
|
|
local_conv_size=3,
|
|
layer_lr_decay=0.8
|
|
),
|
|
prompt_encoder=PromptEncoder(
|
|
embed_dim=PROMT_EMBED_DIM,
|
|
image_embedding_size=(image_embedding_size, image_embedding_size),
|
|
input_image_size=(IMAGE_SIZE, IMAGE_SIZE),
|
|
mask_in_chans=16,
|
|
),
|
|
mask_decoder=MaskDecoderHQ(
|
|
num_multimask_outputs=3,
|
|
transformer=TwoWayTransformer(
|
|
depth=2,
|
|
embedding_dim=PROMT_EMBED_DIM,
|
|
mlp_dim=2048,
|
|
num_heads=8,
|
|
),
|
|
transformer_dim=PROMT_EMBED_DIM,
|
|
iou_head_depth=3,
|
|
iou_head_hidden_dim=256,
|
|
vit_dim=160,
|
|
),
|
|
pixel_mean=[123.675, 116.28, 103.53],
|
|
pixel_std=[58.395, 57.12, 57.375],
|
|
)
|
|
|
|
mobile_sam.eval()
|
|
if checkpoint is not None:
|
|
with open(checkpoint, "rb") as f:
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
state_dict = torch.load(f, map_location=device)
|
|
info = mobile_sam.load_state_dict(state_dict, strict=False)
|
|
print(info)
|
|
for n, p in mobile_sam.named_parameters():
|
|
if 'hf_token' not in n and 'hf_mlp' not in n and 'compress_vit_feat' not in n and 'embedding_encoder' not in n and 'embedding_maskfeature' not in n:
|
|
p.requires_grad = False
|
|
return mobile_sam
|
|
|
|
def masks_to_image(anns, request):
|
|
if len(anns)==0:
|
|
return
|
|
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
|
|
ax = plt.gca()
|
|
ax.set_autoscale_on(False)
|
|
|
|
img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
|
|
img[:,:,3] = 0
|
|
for ann in sorted_anns:
|
|
m = ann['segmentation']
|
|
color_mask = np.concatenate([np.random.random(3), [0.35]])
|
|
img[m] = color_mask
|
|
ax.imshow(img)
|
|
plt.axis('off')
|
|
plt.imsave(request.dst, img)
|
|
|
|
|
|
def serve(address):
|
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
|
server.add_insecure_port(address)
|
|
server.start()
|
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
|
|
|
# Define the signal handler function
|
|
def signal_handler(sig, frame):
|
|
print("Received termination signal. Shutting down...")
|
|
server.stop(0)
|
|
sys.exit(0)
|
|
|
|
# Set the signal handlers for SIGINT and SIGTERM
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
signal.signal(signal.SIGTERM, signal_handler)
|
|
|
|
try:
|
|
while True:
|
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
|
except KeyboardInterrupt:
|
|
server.stop(0)
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
|
parser.add_argument(
|
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
serve(args.addr) |