mirror of
https://github.com/Aider-AI/aider.git
synced 2025-05-25 14:55:00 +00:00
222 lines
5.7 KiB
Python
222 lines
5.7 KiB
Python
import json
|
|
import math
|
|
from dataclasses import dataclass, fields
|
|
from typing import Optional
|
|
|
|
import litellm
|
|
from PIL import Image
|
|
|
|
from aider.dump import dump # noqa: F401
|
|
|
|
DEFAULT_MODEL_NAME = "gpt-4-1106-preview"
|
|
|
|
|
|
class NoModelInfo(Exception):
|
|
"""
|
|
Exception raised when model information cannot be retrieved.
|
|
"""
|
|
|
|
def __init__(self, message: Optional[str] = None):
|
|
super().__init__(message or "No model information available.")
|
|
|
|
|
|
@dataclass
|
|
class ModelSettings:
|
|
name: str
|
|
edit_format: str
|
|
weak_model_name: str = "gpt-3.5-turbo-0125"
|
|
use_repo_map: bool = False
|
|
send_undo_reply: bool = False
|
|
|
|
|
|
# https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
|
|
# https://platform.openai.com/docs/models/gpt-3-5-turbo
|
|
# https://openai.com/pricing
|
|
|
|
MODEL_SETTINGS = [
|
|
# gpt-3.5
|
|
ModelSettings(
|
|
"gpt-3.5-turbo-0125",
|
|
"whole",
|
|
),
|
|
ModelSettings(
|
|
"gpt-3.5-turbo-1106",
|
|
"whole",
|
|
),
|
|
ModelSettings(
|
|
"gpt-3.5-turbo-0613",
|
|
"whole",
|
|
),
|
|
ModelSettings(
|
|
"gpt-3.5-turbo-16k-0613",
|
|
"whole",
|
|
),
|
|
# gpt-4
|
|
ModelSettings(
|
|
"gpt-4-turbo-2024-04-09",
|
|
"udiff",
|
|
use_repo_map=True,
|
|
send_undo_reply=True,
|
|
),
|
|
ModelSettings(
|
|
"gpt-4-0125-preview",
|
|
"udiff",
|
|
use_repo_map=True,
|
|
send_undo_reply=True,
|
|
),
|
|
ModelSettings(
|
|
"gpt-4-1106-preview",
|
|
"udiff",
|
|
use_repo_map=True,
|
|
send_undo_reply=True,
|
|
),
|
|
ModelSettings(
|
|
"gpt-4-vision-preview",
|
|
"diff",
|
|
use_repo_map=True,
|
|
send_undo_reply=True,
|
|
),
|
|
ModelSettings(
|
|
"gpt-4-0613",
|
|
"diff",
|
|
use_repo_map=True,
|
|
send_undo_reply=True,
|
|
),
|
|
ModelSettings(
|
|
"gpt-4-32k-0613",
|
|
"diff",
|
|
use_repo_map=True,
|
|
send_undo_reply=True,
|
|
),
|
|
# Claude
|
|
ModelSettings(
|
|
"claude-3-opus-20240229",
|
|
"udiff",
|
|
weak_model_name="claude-3-haiku-20240307",
|
|
use_repo_map=True,
|
|
send_undo_reply=True,
|
|
),
|
|
]
|
|
|
|
ALIASES = {
|
|
# gpt-3.5
|
|
"gpt-3.5-turbo": "gpt-3.5-turbo-0613",
|
|
"gpt-3.5-turbo-16k": "gpt-3.5-turbo-16k-0613",
|
|
# gpt-4
|
|
"gpt-4-turbo": "gpt-4-turbo-2024-04-09",
|
|
"gpt-4-turbo-preview": "gpt-4-0125-preview",
|
|
"gpt-4": "gpt-4-0613",
|
|
"gpt-4-32k": "gpt-4-32k-0613",
|
|
}
|
|
|
|
|
|
class Model:
|
|
name = None
|
|
|
|
weak_model_name = "gpt-3.5-turbo-0125"
|
|
|
|
edit_format = "whole"
|
|
use_repo_map = False
|
|
send_undo_reply = False
|
|
|
|
max_chat_history_tokens = 1024
|
|
weak_model = None
|
|
|
|
def __init__(self, model):
|
|
self.name = model
|
|
|
|
try:
|
|
self.info = litellm.get_model_info(model)
|
|
except Exception as err:
|
|
raise NoModelInfo(str(err))
|
|
|
|
if self.info.get("max_input_tokens", 0) < 32 * 1024:
|
|
self.max_chat_history_tokens = 1024
|
|
else:
|
|
self.max_chat_history_tokens = 2 * 1024
|
|
|
|
self.configure_model_settings(model)
|
|
|
|
def configure_model_settings(self, model):
|
|
for ms in MODEL_SETTINGS:
|
|
# direct match, or match "provider/<model>"
|
|
if model == ms.name or model.endswith("/" + ms.name):
|
|
for field in fields(ModelSettings):
|
|
val = getattr(ms, field.name)
|
|
setattr(self, field.name, val)
|
|
|
|
return # <--
|
|
|
|
if "gpt-4" in model or "claude-2" in model:
|
|
self.edit_format = "diff"
|
|
self.use_repo_map = True
|
|
self.send_undo_reply = True
|
|
|
|
return # <--
|
|
|
|
# use the defaults
|
|
|
|
def __str__(self):
|
|
return self.name
|
|
|
|
def get_weak_model(self):
|
|
if not self.weak_model:
|
|
self.weak_model = Model(self.weak_model_name)
|
|
return self.weak_model
|
|
|
|
def commit_message_models(self):
|
|
return [self.get_weak_model()]
|
|
|
|
def tokenizer(self, text):
|
|
return litellm.encode(model=self.name, text=text)
|
|
|
|
def token_count(self, messages):
|
|
if not self.tokenizer:
|
|
return
|
|
|
|
if type(messages) is str:
|
|
msgs = messages
|
|
else:
|
|
msgs = json.dumps(messages)
|
|
|
|
return len(self.tokenizer(msgs))
|
|
|
|
def token_count_for_image(self, fname):
|
|
"""
|
|
Calculate the token cost for an image assuming high detail.
|
|
The token cost is determined by the size of the image.
|
|
:param fname: The filename of the image.
|
|
:return: The token cost for the image.
|
|
"""
|
|
width, height = self.get_image_size(fname)
|
|
|
|
# If the image is larger than 2048 in any dimension, scale it down to fit within 2048x2048
|
|
max_dimension = max(width, height)
|
|
if max_dimension > 2048:
|
|
scale_factor = 2048 / max_dimension
|
|
width = int(width * scale_factor)
|
|
height = int(height * scale_factor)
|
|
|
|
# Scale the image such that the shortest side is 768 pixels long
|
|
min_dimension = min(width, height)
|
|
scale_factor = 768 / min_dimension
|
|
width = int(width * scale_factor)
|
|
height = int(height * scale_factor)
|
|
|
|
# Calculate the number of 512x512 tiles needed to cover the image
|
|
tiles_width = math.ceil(width / 512)
|
|
tiles_height = math.ceil(height / 512)
|
|
num_tiles = tiles_width * tiles_height
|
|
|
|
# Each tile costs 170 tokens, and there's an additional fixed cost of 85 tokens
|
|
token_cost = num_tiles * 170 + 85
|
|
return token_cost
|
|
|
|
def get_image_size(self, fname):
|
|
"""
|
|
Retrieve the size of an image.
|
|
:param fname: The filename of the image.
|
|
:return: A tuple (width, height) representing the image size in pixels.
|
|
"""
|
|
with Image.open(fname) as img:
|
|
return img.size
|