aider/aider/sendchat.py
2024-05-08 08:05:15 -07:00

80 lines
1.9 KiB
Python

import hashlib
import json
import backoff
import httpx
import openai
# from diskcache import Cache
from openai import APIConnectionError, InternalServerError, RateLimitError
from aider.dump import dump # noqa: F401
from aider.litellm import litellm
CACHE_PATH = "~/.aider.send.cache.v1"
CACHE = None
# CACHE = Cache(CACHE_PATH)
def should_giveup(e):
if not hasattr(e, "status_code"):
return False
return not litellm._should_retry(e.status_code)
@backoff.on_exception(
backoff.expo,
(
InternalServerError,
RateLimitError,
APIConnectionError,
httpx.ConnectError,
httpx.RemoteProtocolError,
litellm.exceptions.ServiceUnavailableError,
),
giveup=should_giveup,
max_time=60,
on_backoff=lambda details: print(
f"{details.get('exception','Exception')}\nRetry in {details['wait']:.1f} seconds."
),
)
def send_with_retries(model_name, messages, functions, stream):
kwargs = dict(
model=model_name,
messages=messages,
temperature=0,
stream=stream,
)
if functions is not None:
kwargs["functions"] = functions
key = json.dumps(kwargs, sort_keys=True).encode()
# Generate SHA1 hash of kwargs and append it to chat_completion_call_hashes
hash_object = hashlib.sha1(key)
if not stream and CACHE is not None and key in CACHE:
return hash_object, CACHE[key]
# del kwargs['stream']
res = litellm.completion(**kwargs)
if not stream and CACHE is not None:
CACHE[key] = res
return hash_object, res
def simple_send_with_retries(model_name, messages):
try:
_hash, response = send_with_retries(
model_name=model_name,
messages=messages,
functions=None,
stream=False,
)
return response.choices[0].message.content
except (AttributeError, openai.BadRequestError):
return