aider/aider/sendchat.py
2023-08-09 11:57:00 -03:00

77 lines
1.8 KiB
Python

import hashlib
import json
import backoff
import openai
import requests
from diskcache import Cache
from openai.error import (
APIConnectionError,
APIError,
RateLimitError,
ServiceUnavailableError,
Timeout,
)
CACHE_PATH = "~/.aider.send.cache.v1"
CACHE = Cache(CACHE_PATH)
@backoff.on_exception(
backoff.expo,
(
Timeout,
APIError,
ServiceUnavailableError,
RateLimitError,
APIConnectionError,
requests.exceptions.ConnectionError,
),
max_tries=10,
on_backoff=lambda details: print(
f"{details.get('exception','Exception')}\nRetry in {details['wait']:.1f} seconds."
),
)
def send_with_retries(model, messages, functions, stream):
kwargs = dict(
model=model,
messages=messages,
temperature=0,
stream=stream,
)
if functions is not None:
kwargs["functions"] = functions
# we are abusing the openai object to stash these values
if hasattr(openai, "api_deployment_id"):
kwargs["deployment_id"] = openai.api_deployment_id
if hasattr(openai, "api_engine"):
kwargs["engine"] = openai.api_engine
key = json.dumps(kwargs, sort_keys=True).encode()
# Generate SHA1 hash of kwargs and append it to chat_completion_call_hashes
hash_object = hashlib.sha1(key)
if not stream and key in CACHE:
return hash_object, CACHE[key]
res = openai.ChatCompletion.create(**kwargs)
if not stream:
CACHE[key] = res
return hash_object, res
def simple_send_with_retries(model, messages):
try:
_hash, response = send_with_retries(
model=model,
messages=messages,
functions=None,
stream=False,
)
return response.choices[0].message.content
except (AttributeError, openai.error.InvalidRequestError):
return