aider/aider/models.py
2024-04-20 08:18:27 -07:00

315 lines
8.3 KiB
Python

import difflib
import json
import math
import sys
from dataclasses import dataclass, fields
import litellm
from PIL import Image
from aider.dump import dump # noqa: F401
DEFAULT_MODEL_NAME = "gpt-4-1106-preview"
DEFAULT_WEAK_MODEL_NAME = "gpt-3.5-turbo"
class NoModelInfo(Exception):
"""
Exception raised when model information cannot be retrieved.
"""
def __init__(self, model):
super().__init__(check_model_name(model))
class ModelEnvironmentError(Exception):
"""
Exception raised when the environment isn't setup for the model
"""
def __init__(self, message):
super().__init__(message)
@dataclass
class ModelSettings:
name: str
edit_format: str
weak_model_name: str = DEFAULT_WEAK_MODEL_NAME
use_repo_map: bool = False
send_undo_reply: bool = False
accepts_images: bool = False
# https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
# https://platform.openai.com/docs/models/gpt-3-5-turbo
# https://openai.com/pricing
MODEL_SETTINGS = [
# gpt-3.5
ModelSettings(
"gpt-3.5-turbo-0125",
"whole",
),
ModelSettings(
"gpt-3.5-turbo-1106",
"whole",
),
ModelSettings(
"gpt-3.5-turbo-0613",
"whole",
),
ModelSettings(
"gpt-3.5-turbo-16k-0613",
"whole",
),
# gpt-4
ModelSettings(
"gpt-4-turbo-2024-04-09",
"udiff",
use_repo_map=True,
send_undo_reply=True,
accepts_images=True,
),
ModelSettings(
"gpt-4-turbo",
"udiff",
use_repo_map=True,
send_undo_reply=True,
accepts_images=True,
),
ModelSettings(
"gpt-4-0125-preview",
"udiff",
use_repo_map=True,
send_undo_reply=True,
),
ModelSettings(
"gpt-4-1106-preview",
"udiff",
use_repo_map=True,
send_undo_reply=True,
),
ModelSettings(
"gpt-4-vision-preview",
"diff",
use_repo_map=True,
send_undo_reply=True,
accepts_images=True,
),
ModelSettings(
"gpt-4-0613",
"diff",
use_repo_map=True,
send_undo_reply=True,
),
ModelSettings(
"gpt-4-32k-0613",
"diff",
use_repo_map=True,
send_undo_reply=True,
),
# Claude
ModelSettings(
"claude-3-opus-20240229",
"diff",
weak_model_name="claude-3-haiku-20240307",
use_repo_map=True,
send_undo_reply=True,
),
]
class Model:
name = None
edit_format = "whole"
use_repo_map = False
send_undo_reply = False
accepts_images = False
weak_model_name = DEFAULT_WEAK_MODEL_NAME
max_chat_history_tokens = 1024
weak_model = None
def __init__(self, model, weak_model=None, require_model_info=True, validate_environment=True):
self.name = model
# Are all needed keys/params available?
res = litellm.validate_environment(model)
missing_keys = res.get("missing_keys")
keys_in_environment = res.get("keys_in_environment")
if missing_keys:
if validate_environment:
res = f"To use model {model}, please set these environment variables:"
for key in missing_keys:
res += f"- {key}"
raise ModelEnvironmentError(res)
elif not keys_in_environment:
# https://github.com/BerriAI/litellm/issues/3190
print(f"Unable to check environment variables for model {model}")
# Do we have the model_info?
try:
self.info = litellm.get_model_info(model)
except Exception:
if require_model_info:
raise NoModelInfo(model)
self.info = dict()
if self.info.get("max_input_tokens", 0) < 32 * 1024:
self.max_chat_history_tokens = 1024
else:
self.max_chat_history_tokens = 2 * 1024
self.configure_model_settings(model)
if weak_model is False:
self.weak_model_name = None
else:
self.get_weak_model(weak_model, require_model_info)
def configure_model_settings(self, model):
for ms in MODEL_SETTINGS:
# direct match, or match "provider/<model>"
if model == ms.name or model.endswith("/" + ms.name):
for field in fields(ModelSettings):
val = getattr(ms, field.name)
setattr(self, field.name, val)
return # <--
if "gpt-4" in model or "claude-2" in model:
self.edit_format = "diff"
self.use_repo_map = True
self.send_undo_reply = True
return # <--
# use the defaults
def __str__(self):
return self.name
def get_weak_model(self, provided_weak_model_name, require_model_info):
# If weak_model_name is provided, override the model settings
if provided_weak_model_name:
self.weak_model_name = provided_weak_model_name
if self.weak_model_name == self.name:
self.weak_model = self
return
self.weak_model = Model(
self.weak_model_name,
weak_model=False,
require_model_info=require_model_info,
)
return self.weak_model
def commit_message_models(self):
return [self.weak_model]
def tokenizer(self, text):
return litellm.encode(model=self.name, text=text)
def token_count(self, messages):
if not self.tokenizer:
return
if type(messages) is str:
msgs = messages
else:
msgs = json.dumps(messages)
return len(self.tokenizer(msgs))
def token_count_for_image(self, fname):
"""
Calculate the token cost for an image assuming high detail.
The token cost is determined by the size of the image.
:param fname: The filename of the image.
:return: The token cost for the image.
"""
width, height = self.get_image_size(fname)
# If the image is larger than 2048 in any dimension, scale it down to fit within 2048x2048
max_dimension = max(width, height)
if max_dimension > 2048:
scale_factor = 2048 / max_dimension
width = int(width * scale_factor)
height = int(height * scale_factor)
# Scale the image such that the shortest side is 768 pixels long
min_dimension = min(width, height)
scale_factor = 768 / min_dimension
width = int(width * scale_factor)
height = int(height * scale_factor)
# Calculate the number of 512x512 tiles needed to cover the image
tiles_width = math.ceil(width / 512)
tiles_height = math.ceil(height / 512)
num_tiles = tiles_width * tiles_height
# Each tile costs 170 tokens, and there's an additional fixed cost of 85 tokens
token_cost = num_tiles * 170 + 85
return token_cost
def get_image_size(self, fname):
"""
Retrieve the size of an image.
:param fname: The filename of the image.
:return: A tuple (width, height) representing the image size in pixels.
"""
with Image.open(fname) as img:
return img.size
def check_model_name(model):
res = f"Unknown model {model}"
possible_matches = fuzzy_match_models(model)
if possible_matches:
res += ", did you mean one of these?"
for match in possible_matches:
res += "\n- " + match
return res
def fuzzy_match_models(name):
models = litellm.model_cost.keys()
# Check for exact match first
if name in models:
return [name]
# Check for models containing the name
matching_models = [model for model in models if name in model]
# If no matches found, check for slight misspellings
if not matching_models:
matching_models = difflib.get_close_matches(name, models, n=3, cutoff=0.8)
return matching_models
def main():
if len(sys.argv) != 2:
print("Usage: python models.py <model_name>")
sys.exit(1)
model_name = sys.argv[1]
matching_models = fuzzy_match_models(model_name)
if matching_models:
print(f"Matching models for '{model_name}':")
for model in matching_models:
print(model)
else:
print(f"No matching models found for '{model_name}'.")
if __name__ == "__main__":
main()