mirror of
https://github.com/Aider-AI/aider.git
synced 2025-05-20 12:24:59 +00:00
102 lines
3.3 KiB
Python
Executable file
102 lines
3.3 KiB
Python
Executable file
#!/usr/bin/env python
|
|
|
|
import argparse
|
|
import json
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
|
|
import yaml
|
|
|
|
|
|
def load_results(dirname):
|
|
"""Load all result files from a benchmark directory"""
|
|
dirname = Path(dirname)
|
|
benchmark_dir = Path("tmp.benchmarks") / dirname
|
|
if not benchmark_dir.exists():
|
|
return None
|
|
|
|
all_results = []
|
|
for fname in benchmark_dir.glob("*/.aider.results.json"):
|
|
try:
|
|
results = json.loads(fname.read_text())
|
|
all_results.append(results)
|
|
except json.JSONDecodeError:
|
|
print(f"Failed to parse {fname}")
|
|
continue
|
|
return all_results
|
|
|
|
|
|
def analyze_exercise_solutions(topn=None):
|
|
# Load the leaderboard data
|
|
with open("aider/website/_data/edit_leaderboard.yml") as f:
|
|
leaderboard = yaml.safe_load(f)
|
|
|
|
# Sort models by pass rate to get top N if specified
|
|
if topn:
|
|
leaderboard.sort(key=lambda x: float(x.get("pass_rate_2", 0)), reverse=True)
|
|
leaderboard = leaderboard[:topn]
|
|
|
|
# Get all exercise names from a complete run
|
|
all_exercises = set()
|
|
exercise_solutions = defaultdict(list)
|
|
|
|
# Find a complete run to get all exercise names
|
|
for entry in leaderboard:
|
|
dirname = entry["dirname"]
|
|
results = load_results(dirname)
|
|
if results and len(results) == 133: # Complete run
|
|
all_exercises = {result["testcase"] for result in results}
|
|
break
|
|
|
|
for entry in leaderboard:
|
|
dirname = entry["dirname"]
|
|
model = entry["model"]
|
|
|
|
results = load_results(dirname)
|
|
if not results:
|
|
print(f"Could not load results for {dirname}")
|
|
continue
|
|
|
|
for result in results:
|
|
testcase = result.get("testcase")
|
|
if not testcase:
|
|
continue
|
|
|
|
# Consider it solved if the last test attempt passed
|
|
tests_outcomes = result.get("tests_outcomes", [])
|
|
if tests_outcomes and tests_outcomes[-1]:
|
|
exercise_solutions[testcase].append(model)
|
|
|
|
# Print per-exercise statistics
|
|
print("\nExercise Solution Statistics:")
|
|
print("-" * 40)
|
|
|
|
# Add exercises that were never solved
|
|
for exercise in all_exercises:
|
|
if exercise not in exercise_solutions:
|
|
exercise_solutions[exercise] = []
|
|
|
|
# Sort by number of models that solved each exercise
|
|
sorted_exercises = sorted(exercise_solutions.items(), key=lambda x: len(x[1]), reverse=True)
|
|
|
|
# Calculate max length for alignment
|
|
max_name_len = max(len(testcase) for testcase in all_exercises)
|
|
total_models = len({model for models in exercise_solutions.values() for model in models})
|
|
|
|
for testcase, models in sorted_exercises:
|
|
num_solved = len(models)
|
|
percent = (num_solved / total_models) * 100
|
|
print(f"{testcase:<{max_name_len}} : {num_solved:>3} solved ({percent:>5.1f}%)")
|
|
|
|
print("\nSummary:")
|
|
print(f"Total exercises solved at least once: {len(exercise_solutions)}")
|
|
never_solved = 133 - len(exercise_solutions)
|
|
print(f"Never solved by any model: {never_solved}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--topn", type=int, help="Only consider top N models by pass rate")
|
|
args = parser.parse_args()
|
|
|
|
analyze_exercise_solutions(args.topn)
|