mirror of
https://github.com/Aider-AI/aider.git
synced 2025-05-19 20:05:00 +00:00
417 lines
11 KiB
Python
417 lines
11 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from imgcat import imgcat
|
|
|
|
from aider.dump import dump # noqa: F401
|
|
|
|
|
|
def plot_timing(df):
|
|
"""plot a graph showing the average duration of each (model, edit_format)"""
|
|
plt.rcParams["hatch.linewidth"] = 0.5
|
|
plt.rcParams["hatch.color"] = "#444444"
|
|
|
|
from matplotlib import rc
|
|
|
|
rc("font", **{"family": "sans-serif", "sans-serif": ["Helvetica"], "size": 10})
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 4))
|
|
ax.grid(axis="y", zorder=0, lw=0.2)
|
|
|
|
zorder = 1
|
|
grouped = df.groupby(["model", "edit_format"])["avg_duration"].mean().unstack()
|
|
num_models, num_formats = grouped.shape
|
|
|
|
pos = np.array(range(num_models))
|
|
width = 0.8 / num_formats
|
|
|
|
formats = grouped.columns
|
|
models = grouped.index
|
|
|
|
for i, fmt in enumerate(formats):
|
|
edge = dict(edgecolor="#ffffff", linewidth=1.5)
|
|
color = "#b3e6a8" if "diff" in fmt else "#b3d1e6"
|
|
hatch = "////" if "func" in fmt else ""
|
|
rects = ax.bar(
|
|
pos + i * width,
|
|
grouped[fmt],
|
|
width * 0.95,
|
|
label=fmt,
|
|
color=color,
|
|
hatch=hatch,
|
|
zorder=zorder + 1,
|
|
**edge,
|
|
)
|
|
ax.bar_label(rects, padding=4, labels=[f"{v:.1f}s" for v in grouped[fmt]], size=6)
|
|
|
|
ax.set_xticks([p + 0.5 * width for p in pos])
|
|
ax.set_xticklabels(models)
|
|
|
|
ax.set_ylabel("Average GPT response time\nper exercise (sec)")
|
|
ax.set_title("GPT Code Editing Speed\n(time per coding task)")
|
|
ax.legend(
|
|
title="Edit Format",
|
|
loc="upper left",
|
|
)
|
|
ax.set_ylim(top=max(grouped.max()) * 1.1) # Set y-axis limit to 10% more than the max value
|
|
|
|
plt.tight_layout()
|
|
plt.savefig("tmp_timing.svg")
|
|
imgcat(fig)
|
|
|
|
|
|
def plot_outcomes(df, repeats, repeat_hi, repeat_lo, repeat_avg):
|
|
tries = [df.groupby(["model", "edit_format"])["pass_rate_2"].mean()]
|
|
if True:
|
|
tries += [df.groupby(["model", "edit_format"])["pass_rate_1"].mean()]
|
|
|
|
plt.rcParams["hatch.linewidth"] = 0.5
|
|
plt.rcParams["hatch.color"] = "#444444"
|
|
|
|
from matplotlib import rc
|
|
|
|
rc("font", **{"family": "sans-serif", "sans-serif": ["Helvetica"], "size": 10})
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 4))
|
|
ax.grid(axis="y", zorder=0, lw=0.2)
|
|
|
|
zorder = 1
|
|
for grouped in tries:
|
|
zorder += 1
|
|
df = grouped.unstack()
|
|
num_models, num_formats = df.shape
|
|
|
|
pos = np.array(range(num_models))
|
|
width = 0.8 / num_formats
|
|
|
|
formats = df.columns
|
|
models = df.index
|
|
|
|
for i, fmt in enumerate(formats):
|
|
if zorder > 1:
|
|
edge = dict(
|
|
edgecolor="#ffffff",
|
|
linewidth=1.5,
|
|
)
|
|
else:
|
|
edge = dict()
|
|
if zorder == 2:
|
|
edge["label"] = fmt
|
|
|
|
color = "#b3e6a8" if "diff" in fmt else "#b3d1e6"
|
|
hatch = "////" if "func" in fmt else ""
|
|
rects = ax.bar(
|
|
pos + i * width,
|
|
df[fmt],
|
|
width * 0.95,
|
|
color=color,
|
|
hatch=hatch,
|
|
zorder=zorder,
|
|
**edge,
|
|
)
|
|
if zorder == 2:
|
|
ax.bar_label(rects, padding=4, labels=[f"{v:.0f}%" for v in df[fmt]], size=6)
|
|
|
|
if len(repeats):
|
|
ax.errorbar(
|
|
1.4,
|
|
repeat_avg,
|
|
yerr=[[repeat_lo], [repeat_hi]],
|
|
fmt="none",
|
|
zorder=5,
|
|
capsize=2.5,
|
|
elinewidth=1,
|
|
markeredgewidth=1,
|
|
)
|
|
|
|
ax.set_xticks([p + 0.5 * width for p in pos])
|
|
model_labels = []
|
|
for model in models:
|
|
pieces = model.split("-")
|
|
ml = "-".join(pieces[:2]) + "-\n" + "-".join(pieces[2:])
|
|
model_labels.append(ml)
|
|
|
|
ax.set_xticklabels(model_labels)
|
|
|
|
top = 95
|
|
ax.annotate(
|
|
"First attempt,\nbased on\nnatural language\ninstructions",
|
|
xy=(2.20, 41),
|
|
xytext=(2, top),
|
|
horizontalalignment="center",
|
|
verticalalignment="top",
|
|
arrowprops={"arrowstyle": "->", "connectionstyle": "arc3,rad=0.3"},
|
|
)
|
|
ax.annotate(
|
|
"Second attempt,\nincluding unit test\nerror output",
|
|
xy=(2.55, 56),
|
|
xytext=(3.5, top),
|
|
horizontalalignment="center",
|
|
verticalalignment="top",
|
|
arrowprops={"arrowstyle": "->", "connectionstyle": "arc3,rad=0.3"},
|
|
)
|
|
|
|
ax.set_ylabel("Percent of exercises completed successfully")
|
|
# ax.set_xlabel("Model")
|
|
ax.set_title("GPT Code Editing Skill\n(percent coding tasks correct)")
|
|
ax.legend(
|
|
title="Edit Format",
|
|
loc="upper left",
|
|
# bbox_to_anchor=(0.95, 0.95),
|
|
)
|
|
ax.set_ylim(top=100)
|
|
|
|
plt.tight_layout()
|
|
plt.savefig("tmp.svg")
|
|
imgcat(fig)
|
|
|
|
# df.to_csv("tmp.benchmarks.csv")
|
|
|
|
|
|
def plot_outcomes_claude(df):
|
|
print(df)
|
|
|
|
# Fix wrong column label
|
|
df["model"] = df["model"].replace("gpt-4-0314", "gpt-4-0613")
|
|
|
|
tries = [
|
|
df[["model", "pass_rate_2"]],
|
|
df[["model", "pass_rate_1"]],
|
|
]
|
|
|
|
plt.rcParams["hatch.linewidth"] = 0.5
|
|
plt.rcParams["hatch.color"] = "#444444"
|
|
|
|
from matplotlib import rc
|
|
|
|
rc("font", **{"family": "sans-serif", "sans-serif": ["Helvetica"], "size": 10})
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 4))
|
|
ax.grid(axis="y", zorder=0, lw=0.2)
|
|
|
|
zorder = 1
|
|
for df in tries:
|
|
zorder += 1
|
|
print(df)
|
|
|
|
num_models, _ = df.shape
|
|
num_formats = 1
|
|
|
|
pos = np.array(range(num_models))
|
|
width = 0.6 / num_formats
|
|
|
|
if zorder > 1:
|
|
edge = dict(
|
|
edgecolor="#ffffff",
|
|
linewidth=1.5,
|
|
)
|
|
else:
|
|
edge = dict()
|
|
if zorder == 2:
|
|
edge["label"] = "??"
|
|
|
|
color = [
|
|
"#b3e6a8",
|
|
"#b3e6a8",
|
|
"#b3e6a8",
|
|
"#b3d1e6",
|
|
]
|
|
hatch = [ # noqa: F841
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"////",
|
|
"////",
|
|
"////",
|
|
"",
|
|
"////",
|
|
]
|
|
hatch = [ # noqa: F841
|
|
"////",
|
|
"////",
|
|
"////",
|
|
"////",
|
|
"",
|
|
"",
|
|
"",
|
|
"////",
|
|
"",
|
|
]
|
|
rects = ax.bar(
|
|
pos + 0.5 * width,
|
|
df.iloc[:, 1],
|
|
width * 0.95,
|
|
color=color,
|
|
# hatch=hatch,
|
|
# zorder=zorder,
|
|
**edge,
|
|
)
|
|
if zorder == 2:
|
|
ax.bar_label(rects, padding=4, labels=[f"{v:.0f}%" for v in df.iloc[:, 1]], size=6)
|
|
|
|
ax.set_xticks([p + 0.5 * width for p in pos])
|
|
|
|
models = df.iloc[:, 0]
|
|
model_map = {
|
|
"gpt-4-0613": "gpt-4-\n0613",
|
|
"gpt-4-0125-preview": "gpt-4-\n0125-preview",
|
|
"gpt-4-1106-preview": "gpt-4-\n1106-preview",
|
|
"gpt-4-turbo-2024-04-09": "gpt-4-turbo-\n2024-04-09\n(GPT-4 Turbo with Vision)",
|
|
}
|
|
model_labels = []
|
|
for model in models:
|
|
ml = model_map.get(model, model)
|
|
model_labels.append(ml)
|
|
ax.set_xticklabels(model_labels, rotation=0)
|
|
|
|
top = 95
|
|
ax.annotate(
|
|
"First attempt,\nbased on\nnatural language\ninstructions",
|
|
xy=(1.0, 53),
|
|
xytext=(0.75, top),
|
|
horizontalalignment="center",
|
|
verticalalignment="top",
|
|
arrowprops={"arrowstyle": "->", "connectionstyle": "arc3,rad=0.3"},
|
|
)
|
|
ax.annotate(
|
|
"Second attempt,\nincluding unit test\nerror output",
|
|
xy=(1.55, 65),
|
|
xytext=(1.9, top),
|
|
horizontalalignment="center",
|
|
verticalalignment="top",
|
|
arrowprops={"arrowstyle": "->", "connectionstyle": "arc3,rad=0.3"},
|
|
)
|
|
|
|
ax.set_ylabel("Percent of exercises completed successfully")
|
|
# ax.set_xlabel("Model")
|
|
ax.set_title("Code Editing Skill")
|
|
# ax.legend(
|
|
# title="Model family",
|
|
# loc="upper left",
|
|
# )
|
|
ax.set_ylim(top=100)
|
|
|
|
plt.tight_layout()
|
|
plt.savefig("tmp.svg")
|
|
imgcat(fig)
|
|
|
|
# df.to_csv("tmp.benchmarks.csv")
|
|
|
|
|
|
def plot_refactoring(df):
|
|
tries = [df.groupby(["model", "edit_format"])["pass_rate_1"].mean()]
|
|
|
|
plt.rcParams["hatch.linewidth"] = 0.5
|
|
plt.rcParams["hatch.color"] = "#444444"
|
|
|
|
from matplotlib import rc
|
|
|
|
rc("font", **{"family": "sans-serif", "sans-serif": ["Helvetica"], "size": 10})
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 4))
|
|
ax.grid(axis="y", zorder=0, lw=0.2)
|
|
|
|
zorder = 1
|
|
for grouped in tries:
|
|
zorder += 1
|
|
df = grouped.unstack()
|
|
|
|
i, j = 0, 1
|
|
temp = df.iloc[i].copy()
|
|
df.iloc[i], df.iloc[j] = df.iloc[j], temp
|
|
dump(df)
|
|
|
|
# df.sort_values(by=["model"], ascending=False, inplace=True)
|
|
num_models, num_formats = df.shape
|
|
|
|
pos = np.array(range(num_models))
|
|
width = 0.8 / num_formats
|
|
|
|
formats = df.columns
|
|
models = df.index
|
|
|
|
dump(df)
|
|
dump(models)
|
|
dump(formats)
|
|
for i, fmt in enumerate(formats):
|
|
hatch = ""
|
|
|
|
if fmt == "diff":
|
|
color = "#b3e6a8"
|
|
label = "Search/replace blocks"
|
|
elif fmt == "udiff":
|
|
color = "#b3d1e6"
|
|
label = "Unified diffs"
|
|
elif fmt == "difffolk":
|
|
label = "Baseline + blind, no hands, $2k tip, etc"
|
|
color = "#b3e6a8"
|
|
hatch = "////"
|
|
elif fmt == "udifffolk":
|
|
label = "Unified diffs + blind, no hands, $2k tip, etc"
|
|
color = "#b3d1e6"
|
|
hatch = "////"
|
|
|
|
if zorder > 1:
|
|
edge = dict(
|
|
edgecolor="#ffffff",
|
|
linewidth=1.5,
|
|
)
|
|
else:
|
|
edge = dict()
|
|
if zorder == 2:
|
|
edge["label"] = label
|
|
|
|
color = [
|
|
"#b3e6a8",
|
|
"#b3e6a8",
|
|
"#b3d1e6",
|
|
]
|
|
|
|
rects = ax.bar(
|
|
pos + i * width,
|
|
df[fmt],
|
|
width * 0.95,
|
|
color=color,
|
|
hatch=hatch,
|
|
zorder=zorder,
|
|
**edge,
|
|
)
|
|
|
|
if zorder == 2:
|
|
ax.bar_label(rects, padding=4, labels=[f"{v:.0f}%" for v in df[fmt]], size=6)
|
|
|
|
ax.set_xticks([p + 0 * width for p in pos])
|
|
|
|
model_map = {
|
|
"gpt-4-0125-preview": "gpt-4-\n0125-preview",
|
|
"gpt-4-1106-preview": "gpt-4-\n1106-preview",
|
|
"gpt-4-turbo-2024-04-09": "gpt-4-turbo-\n2024-04-09\n(GPT-4 Turbo with Vision)",
|
|
}
|
|
model_labels = []
|
|
|
|
for model in models:
|
|
ml = model_map.get(model, model)
|
|
model_labels.append(ml)
|
|
|
|
model_labels = [
|
|
"gpt-4-\n1106-preview",
|
|
"gpt-4-\n0125-preview",
|
|
"gpt-4-turbo-\n2024-04-09\n(GPT-4 Turbo with Vision)",
|
|
]
|
|
ax.set_xticklabels(model_labels, rotation=0)
|
|
|
|
ax.set_ylabel("Percent of exercises completed successfully")
|
|
# ax.set_xlabel("Model")
|
|
ax.set_title('Refactoring "Laziness" Benchmark')
|
|
# ax.legend(
|
|
# title="Edit Format",
|
|
# loc="upper left",
|
|
# bbox_to_anchor=(0.95, 0.95),
|
|
# )
|
|
ax.set_ylim(top=100)
|
|
|
|
plt.tight_layout()
|
|
plt.savefig("tmp.svg")
|
|
imgcat(fig)
|
|
|
|
# df.to_csv("tmp.benchmarks.csv")
|