# Context:
USER: how can i set the bar color/fill style for each edit-format
ASSISTANT: To set the bar color/fill style for each edit-format, you need to modify the `show_stats` function in the `benchmark/benchmark.py` file.
Here are the steps:
1. Define a dictionary mapping each edit-format to a specific color or fill style.
2. Use the `color` or `fill` parameter in the `plot` function to set the color or fill style for each bar.
Here is the code change:
```python
benchmark/benchmark.py
<<<<<<< ORIGINAL
fig, ax = plt.subplots(figsize=(10, 6))
df_grouped2.unstack().plot(kind="barh", ax=ax)
=======
fig, ax = plt.subplots(figsize=(10, 6))
color_map = {"edit_format1": "blue", "edit_format2": "green", "edit_format3": "red"} # Define your color map here
df_grouped2.unstack().plot(kind="barh", ax=ax, color=[color_map[i] for i in df_grouped2.index])
>>>>>>> UPDATED
```
Please replace `"edit_format1"`, `"edit_format2"`, and `"edit_format3"` with your actual edit formats, and `"blue"`, `"green"`, and `"red"` with your desired colors.
# Context:
USER: sort the grouped columns by descending average
ASSISTANT: To sort the grouped columns by descending average, we need to modify the `show_stats` function in the `benchmark/benchmark.py` file. Specifically, we need to sort the `df_grouped` DataFrame by its values in descending order.
Here is the change:
```python
benchmark/benchmark.py
<<<<<<< ORIGINAL
df_grouped = df.groupby(["model", "edit_format"])["pass_rate_1"].mean()
=======
df_grouped = df.groupby(["model", "edit_format"])["pass_rate_1"].mean().sort_values(ascending=False)
>>>>>>> UPDATED
```
This change will sort the grouped DataFrame `df_grouped` by its values in descending order. The `ascending=False` argument in the `sort_values` function ensures that the sorting is done in descending order.
# Context:
USER: switch the plt stuff to use an explicit fig
ASSISTANT: To switch the matplotlib plotting to use an explicit figure, we need to modify the `show_stats` function in the `benchmark/benchmark.py` file.
Here are the changes:
```python
benchmark/benchmark.py
<<<<<<< ORIGINAL
df_grouped.unstack().plot(kind="barh", figsize=(10, 6))
plt.xlabel("Pass Rate 1")
plt.ylabel("Model")
plt.title("Pass Rate 1 for each Model/Edit Format")
plt.legend(title="Edit Format")
plt.show()
=======
fig, ax = plt.subplots(figsize=(10, 6))
df_grouped.unstack().plot(kind="barh", ax=ax)
ax.set_xlabel("Pass Rate 1")
ax.set_ylabel("Model")
ax.set_title("Pass Rate 1 for each Model/Edit Format")
ax.legend(title="Edit Format")
plt.show()
>>>>>>> UPDATED
```
This change creates a new figure and axes before plotting, and then uses the axes for setting labels, title, and legend. This is a more explicit way of handling figures and axes in matplotlib.
# Context:
USER: don't combine the edit formats. plot a different bar for each model/edit_format combo. But group the bars for each model together.
ASSISTANT: To implement this change, we need to modify the `show_stats` function in the `benchmark/benchmark.py` file. We will use the pandas and matplotlib libraries to create the bar plot.
Here are the steps:
1. In the `show_stats` function, after creating the DataFrame `df`, sort it based on "model" and "edit_format".
2. Group the DataFrame by "model" and "edit_format" and plot a bar graph for "pass_rate_1".
Here are the changes:
```python
benchmark/benchmark.py
<<<<<<< ORIGINAL
def show_stats(dirnames):
rows = []
for dirname in dirnames:
row = summarize_results(dirname)
rows.append(vars(row))
df = pd.DataFrame.from_records(rows)
df.sort_values(by=["model", "edit_format"], inplace=True)
df_grouped = df.groupby("model")["pass_rate_1"].mean()
df_grouped.plot(kind='barh', figsize=(10, 6))
plt.xlabel('Pass Rate 1')
plt.ylabel('Model')
plt.title('Pass Rate 1 for each Model/Edit Format')
plt.show()
df.to_csv("tmp.benchmark.csv")
=======
def show_stats(dirnames):
rows = []
for dirname in dirnames:
row = summarize_results(dirname)
rows.append(vars(row))
df = pd.DataFrame.from_records(rows)
df.sort_values(by=["model", "edit_format"], inplace=True)
df_grouped = df.groupby(["model", "edit_format"])["pass_rate_1"].mean()
df_grouped.unstack().plot(kind='barh', figsize=(10, 6))
plt.xlabel('Pass Rate 1')
plt.ylabel('Model')
plt.title('Pass Rate 1 for each Model/Edit Format')
plt.legend(title='Edit Format')
plt.show()
df.to_csv("tmp.benchmark.csv")
>>>>>>> UPDATED
```
This will create a bar graph with the average of "pass_rate_1" for each "edit_format" within each model. The bars for each model are grouped together.
# Context:
USER: in `show_stats` plot a horizontal bar graph. sort on "model" and "edit_format". group the bars by model. plot the pass_rate_1 for each model/edit_format.
ASSISTANT: To implement this change, we need to modify the `show_stats` function in the `benchmark/benchmark.py` file. We will use the pandas and matplotlib libraries to create the bar plot.
Here are the steps:
1. Import the matplotlib library at the top of the file.
2. In the `show_stats` function, after creating the DataFrame `df`, sort it based on "model" and "edit_format".
3. Group the DataFrame by "model" and plot a bar graph for "pass_rate_1".
Here are the changes:
```python
benchmark/benchmark.py
<<<<<<< ORIGINAL
import pandas as pd
=======
import pandas as pd
import matplotlib.pyplot as plt
>>>>>>> UPDATED
```
```python
benchmark/benchmark.py
<<<<<<< ORIGINAL
def show_stats(dirnames):
rows = []
for dirname in dirnames:
row = summarize_results(dirname)
rows.append(vars(row))
df = pd.DataFrame.from_records(rows)
print(df)
df.to_csv("tmp.benchmark.csv")
=======
def show_stats(dirnames):
rows = []
for dirname in dirnames:
row = summarize_results(dirname)
rows.append(vars(row))
df = pd.DataFrame.from_records(rows)
df.sort_values(by=["model", "edit_format"], inplace=True)
df_grouped = df.groupby("model")["pass_rate_1"].mean()
df_grouped.plot(kind='barh', figsize=(10, 6))
plt.xlabel('Pass Rate 1')
plt.ylabel('Model')
plt.title('Pass Rate 1 for each Model/Edit Format')
plt.show()
df.to_csv("tmp.benchmark.csv")
>>>>>>> UPDATED
```
Please note that this will create a bar graph with the average of "pass_rate_1" for each model. If you want to plot "pass_rate_1" for each "edit_format" within each model, we would need to modify the grouping and plotting code.
# Context:
USER: benchmark/benchmark.py:60:15: F821 undefined name 'List'
ASSISTANT: To fix the undefined name 'List' error, we need to import the List class from the typing module.
Here is the change:
```python
benchmark/benchmark.py
<<<<<<< ORIGINAL
import datetime
import json
import os
import random
import re
import shutil
import subprocess
import time
from collections import defaultdict
from json.decoder import JSONDecodeError
from pathlib import Path
=======
import datetime
import json
import os
import random
import re
import shutil
import subprocess
import time
from collections import defaultdict
from json.decoder import JSONDecodeError
from pathlib import Path
from typing import List
>>>>>>> UPDATED
```
# Context:
USER: make the `dirname` cmd line arg accept many dirnames
ASSISTANT: To make the `dirname` command line argument accept multiple directory names, we need to modify the `main` function in the `benchmark/benchmark.py` file.
We will change the `dirname` argument from a single string to a list of strings. This will allow the user to input multiple directory names separated by spaces.
Here is the change:
```python
benchmark/benchmark.py
<<<<<<< ORIGINAL
def main(
dirname: str = typer.Argument(..., help="Directory name"),
=======
def main(
dirname: List[str] = typer.Argument(..., help="Directory names"),
>>>>>>> UPDATED
```
Please note that this change will require modifications in the rest of the code where `dirname` is used, as it will now be a list of strings instead of a single string. We will need to iterate over the list and apply the existing logic to each directory name.
If you agree with this change, I will proceed to identify and modify the rest of the code accordingly.
# Context:
USER: when `subprocess` `timeout` fires, do we need to kill the subprocess? just in `run_unit_tests`
ASSISTANT: When a subprocess times out, it is not automatically terminated. So, yes, if you want to ensure that the subprocess is terminated when it times out, you should explicitly kill it.
Here's how you can modify the `run_unit_tests` function to kill the subprocess when it times out:
```python
benchmark/benchmark.py
<<<<<<< ORIGINAL
try:
result = subprocess.run(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
timeout=timeout,
)
if result.returncode != 0:
all_tests_passed = False
print(f"Test {test_file} failed")
res = cleanup_test_output(result.stdout)
except subprocess.TimeoutExpired:
all_tests_passed = False
res = f"Test {test_file} timed out after {timeout} seconds."
=======
with subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True) as proc:
try:
stdout, _ = proc.communicate(timeout=timeout)
if proc.returncode != 0:
all_tests_passed = False
print(f"Test {test_file} failed")
res = cleanup_test_output(stdout)
except subprocess.TimeoutExpired:
proc.kill()
proc.wait()
all_tests_passed = False
res = f"Test {test_file} timed out after {timeout} seconds."
>>>>>>> UPDATED
```
This change uses `subprocess.Popen` to create the subprocess and `communicate` to interact with it. If `communicate` times out, it raises `subprocess.TimeoutExpired`, and then we kill the subprocess with `proc.kill()`.