mirror of
https://github.com/Aider-AI/aider.git
synced 2025-05-20 04:14:59 +00:00
feat: Add OpenAI TTS audio generation and playback for recordings
This commit is contained in:
parent
874df40303
commit
278f748c1c
3 changed files with 173 additions and 20 deletions
|
@ -0,0 +1,135 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
Generate TTS audio files for recording commentary using OpenAI's API.
|
||||
Usage: python scripts/recording_audio.py path/to/recording.md
|
||||
"""
|
||||
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
import argparse
|
||||
import requests
|
||||
from pathlib import Path
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# Load environment variables from .env file
|
||||
load_dotenv()
|
||||
|
||||
# Configuration
|
||||
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
||||
OUTPUT_DIR = "aider/website/assets/audio"
|
||||
VOICE = "onyx" # Options: alloy, echo, fable, onyx, nova, shimmer
|
||||
|
||||
def extract_recording_id(markdown_file):
|
||||
"""Extract recording ID from the markdown file path."""
|
||||
return Path(markdown_file).stem
|
||||
|
||||
def extract_commentary(markdown_file):
|
||||
"""Extract commentary markers from markdown file."""
|
||||
with open(markdown_file, 'r') as f:
|
||||
content = f.read()
|
||||
|
||||
# Find Commentary section
|
||||
commentary_match = re.search(r'## Commentary\s+(.*?)(?=##|\Z)', content, re.DOTALL)
|
||||
if not commentary_match:
|
||||
print(f"No Commentary section found in {markdown_file}")
|
||||
return []
|
||||
|
||||
commentary = commentary_match.group(1).strip()
|
||||
|
||||
# Extract timestamp-message pairs
|
||||
markers = []
|
||||
for line in commentary.split('\n'):
|
||||
line = line.strip()
|
||||
if line.startswith('- '):
|
||||
line = line[2:] # Remove the list marker
|
||||
match = re.match(r'(\d+):(\d+)\s+(.*)', line)
|
||||
if match:
|
||||
minutes, seconds, message = match.groups()
|
||||
time_in_seconds = int(minutes) * 60 + int(seconds)
|
||||
markers.append((time_in_seconds, message))
|
||||
|
||||
return markers
|
||||
|
||||
def generate_audio_openai(text, output_file):
|
||||
"""Generate audio using OpenAI TTS API."""
|
||||
if not OPENAI_API_KEY:
|
||||
print("Error: OPENAI_API_KEY environment variable not set")
|
||||
return False
|
||||
|
||||
url = "https://api.openai.com/v1/audio/speech"
|
||||
headers = {
|
||||
"Authorization": f"Bearer {OPENAI_API_KEY}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
data = {
|
||||
"model": "tts-1",
|
||||
"input": text,
|
||||
"voice": VOICE
|
||||
}
|
||||
|
||||
try:
|
||||
response = requests.post(url, headers=headers, json=data)
|
||||
|
||||
if response.status_code == 200:
|
||||
with open(output_file, 'wb') as f:
|
||||
f.write(response.content)
|
||||
return True
|
||||
else:
|
||||
print(f"Error: {response.status_code}, {response.text}")
|
||||
return False
|
||||
except Exception as e:
|
||||
print(f"Exception during API call: {e}")
|
||||
return False
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description='Generate TTS audio for recording commentary.')
|
||||
parser.add_argument('markdown_file', help='Path to the recording markdown file')
|
||||
parser.add_argument('--voice', default=VOICE, help=f'OpenAI voice to use (default: {VOICE})')
|
||||
parser.add_argument('--output-dir', default=OUTPUT_DIR, help=f'Output directory (default: {OUTPUT_DIR})')
|
||||
parser.add_argument('--dry-run', action='store_true', help='Print what would be done without generating audio')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Update globals with any command line overrides
|
||||
global VOICE
|
||||
VOICE = args.voice
|
||||
|
||||
recording_id = extract_recording_id(args.markdown_file)
|
||||
print(f"Processing recording: {recording_id}")
|
||||
|
||||
# Create output directory
|
||||
output_dir = os.path.join(args.output_dir, recording_id)
|
||||
if not args.dry_run:
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
# Extract commentary markers
|
||||
markers = extract_commentary(args.markdown_file)
|
||||
|
||||
if not markers:
|
||||
print("No commentary markers found!")
|
||||
return
|
||||
|
||||
print(f"Found {len(markers)} commentary markers")
|
||||
|
||||
# Generate audio for each marker
|
||||
for time_sec, message in markers:
|
||||
minutes = time_sec // 60
|
||||
seconds = time_sec % 60
|
||||
timestamp = f"{minutes:02d}-{seconds:02d}"
|
||||
filename = f"{timestamp}.mp3"
|
||||
output_file = os.path.join(output_dir, filename)
|
||||
|
||||
print(f"Marker at {minutes}:{seconds:02d} - {message}")
|
||||
if args.dry_run:
|
||||
print(f" Would generate: {output_file}")
|
||||
else:
|
||||
print(f" Generating: {output_file}")
|
||||
success = generate_audio_openai(message, output_file)
|
||||
if success:
|
||||
print(f" ✓ Generated audio file")
|
||||
else:
|
||||
print(f" ✗ Failed to generate audio")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Add table
Add a link
Reference in a new issue