LocalAI/apiv2/engine.go
2023-06-12 17:55:03 -04:00

218 lines
6.1 KiB
Go

package apiv2
import (
"fmt"
"os"
"path/filepath"
"regexp"
"strings"
"sync"
model "github.com/go-skynet/LocalAI/pkg/model"
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
llama "github.com/go-skynet/go-llama.cpp"
"github.com/mitchellh/mapstructure"
gpt4all "github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
"github.com/rs/zerolog/log"
)
type LocalAIEngine struct {
loader *model.ModelLoader
mutexMapMutex sync.Mutex
mutexes map[ConfigRegistration]*sync.Mutex
cutstrings map[ConfigRegistration]map[string]*regexp.Regexp
cutstringMutex sync.Mutex
}
func NewLocalAIEngine(loader *model.ModelLoader) LocalAIEngine {
// TODO CLEANUP: Perform evil magic, we only need to do once, and api should NOT be removed yet.
gpt4alldir := filepath.Join(".", "backend-assets", "gpt4all")
os.Setenv("GPT4ALL_IMPLEMENTATIONS_PATH", gpt4alldir)
log.Debug().Msgf("[*HAX*] GPT4ALL_IMPLEMENTATIONS_PATH: %s", gpt4alldir)
return LocalAIEngine{
loader: loader,
mutexes: make(map[ConfigRegistration]*sync.Mutex),
cutstrings: make(map[ConfigRegistration]map[string]*regexp.Regexp),
}
}
// TODO model interface? Currently scheduled for phase 3 lol
func (e *LocalAIEngine) LoadModel(config Config) (interface{}, error) {
ls := config.GetLocalSettings()
log.Debug().Msgf("[LocalAIEngine::LoadModel] LocalAIEngine.LoadModel => %+v", config)
return e.loader.BackendLoader(ls.Backend, ls.ModelPath, config.ToModelOptions(), uint32(ls.Threads))
}
func (e *LocalAIEngine) GetModelPredictionFunction(config Config, tokenCallback func(string) bool) (func() ([]string, error), error) {
log.Debug().Msgf("[LocalAIEngine::GetModelPredictionFunction] called for configuration:\n%+v", config)
supportStreams := false
var predictOnce func(p Prompt) (string, error) = nil
inferenceModel, err := e.LoadModel(config)
if err != nil {
return nil, fmt.Errorf("error loading model: %w", err)
}
prompts, err := config.GetPrompts()
if err != nil {
return nil, fmt.Errorf("error calling GetPrompts(): %w", err)
}
switch localModel := inferenceModel.(type) {
case *llama.LLama:
supportStreams = true
predictOnce = func(p Prompt) (string, error) {
if tokenCallback != nil {
localModel.SetTokenCallback(tokenCallback)
}
// TODO: AsTokens? I think that would need to be exposed from llama and the others.
str, er := localModel.Predict(
p.AsString(),
config.ToPredictOptions()...,
)
// Seems that if we don't free the callback explicitly we leave functions registered (that might try to send on closed channels)
// For instance otherwise the API returns: {"error":{"code":500,"message":"send on closed channel","type":""}}
// after a stream event has occurred
localModel.SetTokenCallback(nil)
return str, er
}
case *gpt4all.Model:
supportStreams = true
predictOnce = func(p Prompt) (string, error) {
if tokenCallback != nil {
localModel.SetTokenCallback(tokenCallback)
}
tempFakePO := []gpt4all.PredictOption{}
mappedPredictOptions := gpt4all.PredictOptions{}
mapstructure.Decode(config.ToPredictOptions(), &mappedPredictOptions)
// str, err := localModel.PredictTEMP(
str, err := localModel.Predict(
p.AsString(),
// mappedPredictOptions,
tempFakePO...,
)
// Seems that if we don't free the callback explicitly we leave functions registered (that might try to send on closed channels)
// For instance otherwise the API returns: {"error":{"code":500,"message":"send on closed channel","type":""}}
// after a stream event has occurred
localModel.SetTokenCallback(nil)
return str, err
}
case *transformers.GPTJ:
supportStreams = false // EXP
predictOnce = func(p Prompt) (string, error) {
mappedPredictOptions := transformers.PredictOptions{}
mapstructure.Decode(config.ToPredictOptions(), &mappedPredictOptions)
// TODO Leave this for testing phase 1
fmt.Printf("MAPPED OPTIONS: %+v\n", mappedPredictOptions)
// str, err := localModel.PredictTEMP(
str, err := localModel.Predict(
p.AsString(),
// mappedPredictOptions,
nil,
)
return str, err
}
}
if predictOnce == nil {
return nil, fmt.Errorf("failed to find a predictOnce for %T", inferenceModel)
}
req := config.GetRequestDefaults()
return func() ([]string, error) {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
e.mutexMapMutex.Lock()
r := config.GetRegistration()
l, ok := e.mutexes[r]
if !ok {
m := &sync.Mutex{}
e.mutexes[r] = m
l = m
}
e.mutexMapMutex.Unlock()
l.Lock()
defer l.Unlock()
results := []string{}
n, err := config.GetN()
if err != nil {
// TODO live to regret this, but for now...
n = 1
}
for _, prompt := range prompts {
for n_i := 0; n_i < n; n_i++ {
res, err := predictOnce(prompt)
if err != nil {
return nil, err
}
// TODO: this used to be a part of finetune. For.... questionable parameter reasons I've moved it up here. Revisit this if it's smelly in the future.
ccr, is_ccr := req.(CreateCompletionRequest)
if is_ccr {
if ccr.Echo != nil && *ccr.Echo { // 🥲
res = prompt.AsString() + res
}
}
res = e.Finetune(config, res)
if tokenCallback != nil && !supportStreams {
tokenCallback(res)
}
log.Debug().Msgf("[%s - %s] prediction: %s", r.Model, r.Endpoint, res)
results = append(results, res)
}
}
return results, nil
}, nil
}
func (e *LocalAIEngine) Finetune(config Config, prediction string) string {
reg := config.GetRegistration()
switch req := config.GetRequestDefaults().(type) {
case *CreateChatCompletionRequest:
case *CreateCompletionRequest:
ext := req.XLocalaiExtensions
if ext != nil {
for _, c := range *ext.Cutstrings {
e.cutstringMutex.Lock()
regex, ok := e.cutstrings[reg][c]
if !ok {
e.cutstrings[reg][c] = regexp.MustCompile(c)
regex = e.cutstrings[reg][c]
}
e.cutstringMutex.Unlock()
prediction = regex.ReplaceAllString(prediction, "")
}
for _, c := range *ext.Trimstrings {
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
}
}
}
return prediction
}