LocalAI/backend/cpp/llama/utils.hpp
Ettore Di Giacinto 7437d0c9ca WIP
2025-05-14 20:11:06 +02:00

910 lines
No EOL
29 KiB
C++
Vendored

// https://github.com/ggerganov/llama.cpp/blob/master/tools/server/utils.hpp
#pragma once
#include <string>
#include <vector>
#include <set>
#include <mutex>
#include <condition_variable>
#include <unordered_map>
#include "json.hpp"
#include "../mtmd/clip.h"
using json = nlohmann::json;
extern bool server_verbose;
#ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1
#endif
#if SERVER_VERBOSE != 1
#define LOG_VERBOSE(MSG, ...)
#else
#define LOG_VERBOSE(MSG, ...) \
do \
{ \
if (server_verbose) \
{ \
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
} \
} while (0)
#endif
#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
//
// parallel
//
enum server_state {
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
SERVER_STATE_READY, // Server is ready and model is loaded
SERVER_STATE_ERROR // An error occurred, load_model failed
};
enum task_type {
TASK_TYPE_COMPLETION,
TASK_TYPE_CANCEL,
TASK_TYPE_NEXT_RESPONSE
};
struct task_server {
int id = -1; // to be filled by llama_server_queue
int target_id;
task_type type;
json data;
bool infill_mode = false;
bool embedding_mode = false;
int multitask_id = -1;
};
struct task_result {
int id;
int multitask_id = -1;
bool stop;
bool error;
json result_json;
};
struct task_multi {
int id;
std::set<int> subtasks_remaining{};
std::vector<task_result> results{};
};
// TODO: can become bool if we can't find use of more states
enum slot_state
{
IDLE,
PROCESSING,
};
enum slot_command
{
NONE,
LOAD_PROMPT,
RELEASE,
};
struct slot_params
{
bool stream = true;
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
uint32_t seed = -1; // RNG seed
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_predict = -1; // new tokens to predict
std::vector<std::string> antiprompt;
json input_prefix;
json input_suffix;
};
struct slot_image
{
int32_t id;
bool request_encode_image = false;
float * image_embedding = nullptr;
int32_t image_tokens = 0;
clip_image_u8 * img_data;
std::string prefix_prompt; // before of this image
};
// completion token output with probabilities
struct completion_token_output
{
struct token_prob
{
llama_token tok;
float prob;
};
std::vector<token_prob> probs;
llama_token tok;
std::string text_to_send;
};
static inline void server_log(const char *level, const char *function, int line,
const char *message, const nlohmann::ordered_json &extra)
{
nlohmann::ordered_json log
{
{"timestamp", time(nullptr)},
{"level", level},
{"function", function},
{"line", line},
{"message", message},
};
if (!extra.empty())
{
log.merge_patch(extra);
}
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
printf("%.*s\n", (int)str.size(), str.data());
fflush(stdout);
}
//
// server utils
//
template <typename T>
static T json_value(const json &body, const std::string &key, const T &default_value)
{
// Fallback null to default value
return body.contains(key) && !body.at(key).is_null()
? body.value(key, default_value)
: default_value;
}
inline std::string format_chatml(std::vector<json> messages)
{
std::ostringstream chatml_msgs;
for (auto it = messages.begin(); it != messages.end(); ++it) {
chatml_msgs << "<|im_start|>"
<< json_value(*it, "role", std::string("user")) << '\n';
chatml_msgs << json_value(*it, "content", std::string(""))
<< "<|im_end|>\n";
}
chatml_msgs << "<|im_start|>assistant" << '\n';
return chatml_msgs.str();
}
//
// work queue utils
//
struct llama_server_queue {
int id = 0;
std::mutex mutex_tasks;
// queues
std::vector<task_server> queue_tasks;
std::vector<task_server> queue_tasks_deferred;
std::vector<task_multi> queue_multitasks;
std::condition_variable condition_tasks;
// callback functions
std::function<void(task_server&)> callback_new_task;
std::function<void(task_multi&)> callback_finish_multitask;
std::function<void(void)> callback_all_task_finished;
// Add a new task to the end of the queue
int post(task_server task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (task.id == -1) {
task.id = id++;
}
queue_tasks.push_back(std::move(task));
condition_tasks.notify_one();
return task.id;
}
// Add a new task, but defer until one slot is available
void defer(task_server task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
queue_tasks_deferred.push_back(std::move(task));
}
// Get the next id for creating anew task
int get_new_id() {
std::unique_lock<std::mutex> lock(mutex_tasks);
return id++;
}
// Register function to process a new task
void on_new_task(std::function<void(task_server&)> callback) {
callback_new_task = callback;
}
// Register function to process a multitask
void on_finish_multitask(std::function<void(task_multi&)> callback) {
callback_finish_multitask = callback;
}
// Register the function to be called when the batch of tasks is finished
void on_all_tasks_finished(std::function<void(void)> callback) {
callback_all_task_finished = callback;
}
// Call when the state of one slot is changed
void notify_slot_changed() {
// move deferred tasks back to main loop
std::unique_lock<std::mutex> lock(mutex_tasks);
for (auto & task : queue_tasks_deferred) {
queue_tasks.push_back(std::move(task));
}
queue_tasks_deferred.clear();
}
// Start the main loop. This call is blocking
[[noreturn]]
void start_loop() {
while (true) {
// new task arrived
LOG_VERBOSE("have new task", {});
{
while (true)
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
lock.unlock();
break;
}
task_server task = queue_tasks.front();
queue_tasks.erase(queue_tasks.begin());
lock.unlock();
LOG_VERBOSE("callback_new_task", {});
callback_new_task(task);
}
LOG_VERBOSE("callback_all_task_finished", {});
// process and update all the multitasks
auto queue_iterator = queue_multitasks.begin();
while (queue_iterator != queue_multitasks.end())
{
if (queue_iterator->subtasks_remaining.empty())
{
// all subtasks done == multitask is done
task_multi current_multitask = *queue_iterator;
callback_finish_multitask(current_multitask);
// remove this multitask
queue_iterator = queue_multitasks.erase(queue_iterator);
}
else
{
++queue_iterator;
}
}
// all tasks in the current loop is finished
callback_all_task_finished();
}
LOG_VERBOSE("wait for new task", {});
// wait for new task
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
condition_tasks.wait(lock, [&]{
return !queue_tasks.empty();
});
}
}
}
}
//
// functions to manage multitasks
//
// add a multitask by specifying the id of all subtask (subtask is a task_server)
void add_multitask(int multitask_id, std::vector<int>& sub_ids)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
task_multi multi;
multi.id = multitask_id;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
}
// updatethe remaining subtasks, while appending results to multitask
void update_multitask(int multitask_id, int subtask_id, task_result& result)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
for (auto& multitask : queue_multitasks)
{
if (multitask.id == multitask_id)
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result);
}
}
}
};
struct llama_server_response {
typedef std::function<void(int, int, task_result&)> callback_multitask_t;
callback_multitask_t callback_update_multitask;
// for keeping track of all tasks waiting for the result
std::set<int> waiting_task_ids;
// the main result queue
std::vector<task_result> queue_results;
std::mutex mutex_results;
std::condition_variable condition_results;
void add_waiting_task_id(int task_id) {
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.insert(task_id);
}
void remove_waiting_task_id(int task_id) {
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.erase(task_id);
}
// This function blocks the thread until there is a response for this task_id
task_result recv(int task_id) {
while (true)
{
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
LOG_VERBOSE("condition_results unblock", {});
for (int i = 0; i < (int) queue_results.size(); i++)
{
if (queue_results[i].id == task_id)
{
assert(queue_results[i].multitask_id == -1);
task_result res = queue_results[i];
queue_results.erase(queue_results.begin() + i);
return res;
}
}
}
// should never reach here
}
// Register the function to update multitask
void on_multitask_update(callback_multitask_t callback) {
callback_update_multitask = callback;
}
// Send a new result to a waiting task_id
void send(task_result result) {
std::unique_lock<std::mutex> lock(mutex_results);
LOG_VERBOSE("send new result", {});
for (auto& task_id : waiting_task_ids) {
// LOG_TEE("waiting task id %i \n", task_id);
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
if (result.multitask_id == task_id)
{
LOG_VERBOSE("callback_update_multitask", {});
callback_update_multitask(task_id, result.id, result);
continue;
}
if (result.id == task_id)
{
LOG_VERBOSE("queue_results.push_back", {});
queue_results.push_back(result);
condition_results.notify_one();
return;
}
}
}
};
//
// base64 utils (TODO: move to common in the future)
//
static const std::string base64_chars =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
static inline bool is_base64(uint8_t c)
{
return (isalnum(c) || (c == '+') || (c == '/'));
}
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string)
{
int i = 0;
int j = 0;
int in_ = 0;
int in_len = encoded_string.size();
uint8_t char_array_4[4];
uint8_t char_array_3[3];
std::vector<uint8_t> ret;
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
{
char_array_4[i++] = encoded_string[in_]; in_++;
if (i == 4)
{
for (i = 0; i <4; i++)
{
char_array_4[i] = base64_chars.find(char_array_4[i]);
}
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (i = 0; (i < 3); i++)
{
ret.push_back(char_array_3[i]);
}
i = 0;
}
}
if (i)
{
for (j = i; j <4; j++)
{
char_array_4[j] = 0;
}
for (j = 0; j <4; j++)
{
char_array_4[j] = base64_chars.find(char_array_4[j]);
}
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (j = 0; (j < i - 1); j++)
{
ret.push_back(char_array_3[j]);
}
}
return ret;
}
//
// tokenizer and input processing utils
//
static bool json_is_array_of_numbers(const json & data) {
if (data.is_array()) {
for (const auto & e : data) {
if (!e.is_number_integer()) {
return false;
}
}
return true;
}
return false;
}
// is array having BOTH numbers & strings?
static bool json_is_array_of_mixed_numbers_strings(const json & data) {
bool seen_string = false;
bool seen_number = false;
if (data.is_array()) {
for (const auto & e : data) {
seen_string |= e.is_string();
seen_number |= e.is_number_integer();
if (seen_number && seen_string) {
return true;
}
}
}
return false;
}
// get value by path(key1 / key2)
static json json_get_nested_values(const std::vector<std::string> & paths, const json & js) {
json result = json::object();
for (const std::string & path : paths) {
json current = js;
const auto keys = string_split<std::string>(path, /*separator*/ '/');
bool valid_path = true;
for (const std::string & k : keys) {
if (valid_path && current.is_object() && current.contains(k)) {
current = current[k];
} else {
valid_path = false;
}
}
if (valid_path) {
result[path] = current;
}
}
return result;
}
/**
* this handles 2 cases:
* - only string, example: "string"
* - mixed string and tokens, example: [12, 34, "string", 56, 78]
*/
static llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
llama_tokens prompt_tokens;
if (json_prompt.is_array()) {
bool first = true;
for (const auto & p : json_prompt) {
if (p.is_string()) {
auto s = p.template get<std::string>();
llama_tokens p;
if (first) {
p = common_tokenize(vocab, s, add_special, parse_special);
first = false;
} else {
p = common_tokenize(vocab, s, false, parse_special);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
} else {
if (first) {
first = false;
}
prompt_tokens.push_back(p.template get<llama_token>());
}
}
} else {
auto s = json_prompt.template get<std::string>();
prompt_tokens = common_tokenize(vocab, s, add_special, parse_special);
}
return prompt_tokens;
}
/**
* break the input "prompt" object into multiple prompt if needed, then tokenize them
* this supports these cases:
* - "prompt": "string"
* - "prompt": [12, 34, 56]
* - "prompt": [12, 34, "string", 56, 78]
* and multiple prompts (multi-tasks):
* - "prompt": ["string1", "string2"]
* - "prompt": ["string1", [12, 34, 56]]
* - "prompt": [[12, 34, 56], [78, 90, 12]]
* - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]]
*/
static std::vector<llama_tokens> tokenize_input_prompts(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
std::vector<llama_tokens> result;
if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
// string or mixed
result.push_back(tokenize_mixed(vocab, json_prompt, add_special, parse_special));
} else if (json_is_array_of_numbers(json_prompt)) {
// array of tokens
result.push_back(json_prompt.get<llama_tokens>());
} else if (json_prompt.is_array()) {
// array of prompts
result.reserve(json_prompt.size());
for (const auto & p : json_prompt) {
if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) {
result.push_back(tokenize_mixed(vocab, p, add_special, parse_special));
} else if (json_is_array_of_numbers(p)) {
// array of tokens
result.push_back(p.get<llama_tokens>());
} else {
throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens");
}
}
} else {
throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts");
}
if (result.empty()) {
throw std::runtime_error("\"prompt\" must not be empty");
}
return result;
}
//
// utils for interacting with libmtmd
// (may need to refactor in near future)
//
/**
* server_tokens is a helper to manage the input tokens and image for the server.
* it is made this way to simplify the logic of KV cache management.
*/
struct server_tokens {
bool has_mtmd = false;
private: // disallow accessing these members directly, risking out-of-sync
// map a **start** position in tokens to the image chunk
std::unordered_map<llama_pos, mtmd::input_chunk_ptr> map_pos_to_image;
// list of tokens
// it can include LLAMA_TOKEN_NULL, which is used to indicate a token that is not a text token
// a mtmd_input_chunk can occupy multiple tokens, one llama_token per **position**
// important: for models using mrope, an image can contain multiple tokens but will use only one **position**
llama_tokens tokens;
// for ex. with input of 5 text tokens and 2 images:
// [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1]
// pos 0 1 2 3 4 5 6 7 8 9
// map_pos_to_image will contain: {5, img0}, {8, img1}
public:
server_tokens() = default;
~server_tokens() = default;
// Prevent copying
server_tokens(const server_tokens&) = delete;
server_tokens& operator=(const server_tokens&) = delete;
// Allow moving (usually implicitly generated if members are movable)
server_tokens(server_tokens&&) = default;
server_tokens& operator=(server_tokens&&) = default;
// Allow accessing elements using [] operator
llama_token operator[](size_t index) { return tokens[index]; }
const llama_token& operator[](size_t index) const { return tokens[index]; }
server_tokens(mtmd::input_chunks & mtmd_chunks, bool has_mtmd) : has_mtmd(has_mtmd) {
for (size_t i = 0; i < mtmd_chunks.size(); ++i) {
push_back(mtmd_chunks[i]);
}
}
server_tokens(llama_tokens & tokens, bool has_mtmd) : has_mtmd(has_mtmd), tokens(tokens) {}
// for debugging
std::string str() const {
std::ostringstream oss;
oss << "tokens: ";
for (const auto & t : tokens) {
if (t == LLAMA_TOKEN_NULL) {
oss << "<embd> ";
} else {
oss << t << " ";
}
}
oss << "\n";
oss << "image pos: ";
for (const auto & it : map_pos_to_image) {
oss << it.first << ", ";
}
return oss.str();
}
const mtmd::input_chunk_ptr & find_chunk(llama_pos pos) const {
auto it = map_pos_to_image.find(pos);
if (it != map_pos_to_image.end()) {
return it->second;
} else {
throw std::runtime_error("Chunk not found");
}
}
void push_back(llama_token tok) {
if (tok == LLAMA_TOKEN_NULL) {
throw std::runtime_error("Invalid token");
}
tokens.emplace_back(tok);
}
// will create a copy of the chunk if it contains non-text data
void push_back(const mtmd_input_chunk * chunk) {
auto type = mtmd_input_chunk_get_type(chunk);
if (type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
GGML_ASSERT(has_mtmd);
auto img_tokens = mtmd_input_chunk_get_tokens_image(chunk);
const int n_pos = mtmd_image_tokens_get_n_pos(img_tokens);
llama_pos start_pos = tokens.size();
for (int i = 0; i < n_pos; ++i) {
tokens.emplace_back(LLAMA_TOKEN_NULL);
}
mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk));
map_pos_to_image[start_pos] = std::move(new_chunk);
} else if (type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens;
auto text_tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
for (size_t i = 0; i < n_tokens; ++i) {
push_back(text_tokens[i]);
}
} else {
GGML_ABORT("Invalid chunk type");
}
}
// for compatibility with context shift and prompt truncation
void insert(const llama_tokens & inp_tokens) {
GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
tokens.insert(tokens.end(), inp_tokens.begin(), inp_tokens.end());
}
// for compatibility with speculative decoding, ctx shift, slot save/load
const llama_tokens & get_text_tokens() const {
GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
return tokens;
}
// for compatibility with speculative decoding
void set_token(llama_pos pos, llama_token id) {
GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
tokens[pos] = id;
}
size_t size() const {
return tokens.size();
}
bool empty() const {
return tokens.empty();
}
void clear() {
tokens.clear();
}
void resize(size_t n) {
GGML_ASSERT(n <= tokens.size());
if (has_mtmd) {
// we throw an error if we try to remove a token in the middle of an image
// for ex. with input of 5 text tokens and 2 images:
// [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1]
// n 1 2 3 4 5 6 7 8 9 10
// allowed to resize ^ ^
// disallowed to resize ^ ^ ^
if (n > 0) {
llama_token last_token = tokens[n - 1];
// make sure we never remove tokens in the middle of an image
if (last_token == LLAMA_TOKEN_NULL) {
find_chunk(n - 1); // will throw an error if the token is not begin-of-chunk
}
}
// remove all image chunks that are not used anymore
for (auto it = map_pos_to_image.begin(); it != map_pos_to_image.end(); ) {
llama_pos pos = it->first;
if (pos >= (llama_pos)n) {
it = map_pos_to_image.erase(it);
} else {
++it;
}
}
}
tokens.resize(n);
}
std::string detokenize(const llama_context * ctx, bool special) const {
llama_tokens text_tokens;
text_tokens.reserve(tokens.size());
for (const auto & t : tokens) {
if (t != LLAMA_TOKEN_NULL) {
text_tokens.push_back(t);
}
}
return common_detokenize(ctx, text_tokens, special);
}
size_t get_common_prefix(const server_tokens & b) const {
size_t max_idx = std::min(tokens.size(), b.tokens.size());
for (size_t i = 0; i < max_idx; ++i) {
auto & ai = tokens[i];
auto & bi = b.tokens[i];
if (ai == LLAMA_TOKEN_NULL && bi == LLAMA_TOKEN_NULL) {
GGML_ASSERT(has_mtmd);
const auto & a_chunk = find_chunk(i);
const auto & b_chunk = b.find_chunk(i);
GGML_ASSERT(a_chunk && b_chunk);
const auto * a_img = mtmd_input_chunk_get_tokens_image(a_chunk.get());
const auto * b_img = mtmd_input_chunk_get_tokens_image(b_chunk.get());
std::string ai_id = mtmd_image_tokens_get_id(a_img);
std::string bi_id = mtmd_image_tokens_get_id(b_img);
size_t a_pos = mtmd_image_tokens_get_n_pos(a_img);
size_t b_pos = mtmd_image_tokens_get_n_pos(b_img);
if (ai_id == bi_id && a_pos == b_pos) {
GGML_ASSERT(a_pos > 0 && "Invalid image token"); // should never happen
i += a_pos - 1; // will be +1 by the for loop
continue;
} else {
return i;
}
} else if (ai == bi) {
continue;
} else {
return i;
}
}
return max_idx; // all tokens are equal
}
// make sure all text tokens are within the vocab range
bool validate(const struct llama_context * ctx) const {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int32_t n_vocab = llama_vocab_n_tokens(vocab);
for (size_t i = 0; i < tokens.size(); ++i) {
auto & t = tokens[i];
if (t == LLAMA_TOKEN_NULL) {
try {
const auto & chunk = find_chunk(i);
const auto * img_tokens = mtmd_input_chunk_get_tokens_image(chunk.get());
size_t n_pos = mtmd_image_tokens_get_n_pos(img_tokens);
i += n_pos - 1; // will be +1 by the for loop
} catch (const std::exception & e) {
return false;
}
} else if (t < 0 || t >= n_vocab) {
return false;
}
}
return true;
}
// encode and decode the image chunk
int32_t process_chunk(
llama_context * ctx,
mtmd_context * mctx,
llama_pos n_past,
int32_t seq_id,
llama_pos & n_pos_out) {
auto it = map_pos_to_image.find(n_past);
if (it == map_pos_to_image.end()) {
throw std::runtime_error("Chunk not found");
}
// SRV_INF("%s\n", "processing image...");
int32_t n_batch = llama_n_batch(ctx);
int64_t t0 = ggml_time_ms();
llama_pos new_n_past = n_past;
int32_t result = mtmd_helper_eval_chunk_single(mctx, ctx,
it->second.get(), // chunk
n_past,
seq_id,
n_batch,
true, // logits last
&new_n_past);
//SRV_INF("image processed in %" PRId64 " ms\n", ggml_time_ms() - t0);
if (result != 0) {
LOG_ERR("mtmd_helper_eval failed with status %d", result);
n_pos_out = n_past;
return result;
}
n_pos_out = new_n_past;
return 0;
}
};
// Computes FNV-1a hash of the data
static std::string fnv_hash(const uint8_t * data, size_t len) {
const uint64_t fnv_prime = 0x100000001b3ULL;
uint64_t hash = 0xcbf29ce484222325ULL;
for (size_t i = 0; i < len; ++i) {
hash ^= data[i];
hash *= fnv_prime;
}
return std::to_string(hash);
}