#pragma once #include "common.h" #include "log.h" #include "llama.h" #include "arg.h" // common_remote_get_content #include "base64.hpp" #include "mtmd.h" // Change JSON_ASSERT from assert() to GGML_ASSERT: #define JSON_ASSERT GGML_ASSERT #include "json.hpp" #include "chat.h" #include #include #include #include #include #include #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo" using json = nlohmann::ordered_json; #define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) #define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) #define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) #define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) #define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) using raw_buffer = std::vector; template static T json_value(const json & body, const std::string & key, const T & default_value) { // Fallback null to default value if (body.contains(key) && !body.at(key).is_null()) { try { return body.at(key); } catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) { LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name()); return default_value; } } else { return default_value; } } const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT); // thin wrapper around common_grammar_trigger with (de)serialization functions struct server_grammar_trigger { common_grammar_trigger value; server_grammar_trigger() = default; server_grammar_trigger(const common_grammar_trigger & value) : value(value) {} server_grammar_trigger(const json & in) { value.type = (common_grammar_trigger_type) in.at("type").get(); value.value = in.at("value").get(); if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) { value.token = (llama_token) in.at("token").get(); } } json to_json() const { json out { {"type", (int) value.type}, {"value", value.value}, }; if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) { out["token"] = (int) value.token; } return out; } }; // // tokenizer and input processing utils // static bool json_is_array_of_numbers(const json & data) { if (data.is_array()) { for (const auto & e : data) { if (!e.is_number_integer()) { return false; } } return true; } return false; } // is array having BOTH numbers & strings? static bool json_is_array_of_mixed_numbers_strings(const json & data) { bool seen_string = false; bool seen_number = false; if (data.is_array()) { for (const auto & e : data) { seen_string |= e.is_string(); seen_number |= e.is_number_integer(); if (seen_number && seen_string) { return true; } } } return false; } // get value by path(key1 / key2) static json json_get_nested_values(const std::vector & paths, const json & js) { json result = json::object(); for (const std::string & path : paths) { json current = js; const auto keys = string_split(path, /*separator*/ '/'); bool valid_path = true; for (const std::string & k : keys) { if (valid_path && current.is_object() && current.contains(k)) { current = current[k]; } else { valid_path = false; } } if (valid_path) { result[path] = current; } } return result; } /** * this handles 2 cases: * - only string, example: "string" * - mixed string and tokens, example: [12, 34, "string", 56, 78] */ static llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) { // If `add_bos` is true, we only add BOS, when json_prompt is a string, // or the first element of the json_prompt array is a string. llama_tokens prompt_tokens; if (json_prompt.is_array()) { bool first = true; for (const auto & p : json_prompt) { if (p.is_string()) { auto s = p.template get(); llama_tokens p; if (first) { p = common_tokenize(vocab, s, add_special, parse_special); first = false; } else { p = common_tokenize(vocab, s, false, parse_special); } prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end()); } else { if (first) { first = false; } prompt_tokens.push_back(p.template get()); } } } else { auto s = json_prompt.template get(); prompt_tokens = common_tokenize(vocab, s, add_special, parse_special); } return prompt_tokens; } /** * break the input "prompt" object into multiple prompt if needed, then tokenize them * this supports these cases: * - "prompt": "string" * - "prompt": [12, 34, 56] * - "prompt": [12, 34, "string", 56, 78] * and multiple prompts (multi-tasks): * - "prompt": ["string1", "string2"] * - "prompt": ["string1", [12, 34, 56]] * - "prompt": [[12, 34, 56], [78, 90, 12]] * - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]] */ static std::vector tokenize_input_prompts(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) { std::vector result; if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) { // string or mixed result.push_back(tokenize_mixed(vocab, json_prompt, add_special, parse_special)); } else if (json_is_array_of_numbers(json_prompt)) { // array of tokens result.push_back(json_prompt.get()); } else if (json_prompt.is_array()) { // array of prompts result.reserve(json_prompt.size()); for (const auto & p : json_prompt) { if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) { result.push_back(tokenize_mixed(vocab, p, add_special, parse_special)); } else if (json_is_array_of_numbers(p)) { // array of tokens result.push_back(p.get()); } else { throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens"); } } } else { throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts"); } if (result.empty()) { throw std::runtime_error("\"prompt\" must not be empty"); } return result; } // return the last index of character that can form a valid string // if the last character is potentially cut in half, return the index before the cut // if validate_utf8(text) == text.size(), then the whole text is valid utf8 static size_t validate_utf8(const std::string& text) { size_t len = text.size(); if (len == 0) return 0; // Check the last few bytes to see if a multi-byte character is cut off for (size_t i = 1; i <= 4 && i <= len; ++i) { unsigned char c = text[len - i]; // Check for start of a multi-byte sequence from the end if ((c & 0xE0) == 0xC0) { // 2-byte character start: 110xxxxx // Needs at least 2 bytes if (i < 2) return len - i; } else if ((c & 0xF0) == 0xE0) { // 3-byte character start: 1110xxxx // Needs at least 3 bytes if (i < 3) return len - i; } else if ((c & 0xF8) == 0xF0) { // 4-byte character start: 11110xxx // Needs at least 4 bytes if (i < 4) return len - i; } } // If no cut-off multi-byte character is found, return full length return len; } // // template utils // // format rerank task: [BOS]query[EOS][SEP]doc[EOS] static llama_tokens format_rerank(const struct llama_vocab * vocab, const llama_tokens & query, const llama_tokens & doc) { llama_tokens result; result.reserve(doc.size() + query.size() + 4); result.push_back(llama_vocab_bos(vocab)); result.insert(result.end(), query.begin(), query.end()); result.push_back(llama_vocab_eos(vocab)); result.push_back(llama_vocab_sep(vocab)); result.insert(result.end(), doc.begin(), doc.end()); result.push_back(llama_vocab_eos(vocab)); return result; } // format infill task static llama_tokens format_infill( const llama_vocab * vocab, const json & input_prefix, const json & input_suffix, const json & input_extra, const int n_batch, const int n_predict, const int n_ctx, const bool spm_infill, const llama_tokens & tokens_prompt ) { // TODO: optimize this block by reducing memory allocations and movement // use FIM repo-level pattern: // ref: https://arxiv.org/pdf/2409.12186 // // [FIM_REP]myproject // [FIM_SEP]filename0 // extra chunk 0 // [FIM_SEP]filename1 // extra chunk 1 // ... // [FIM_SEP]filename // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt // llama_tokens extra_tokens; extra_tokens.reserve(n_ctx); auto tokens_prefix = tokenize_mixed(vocab, input_prefix, false, false); auto tokens_suffix = tokenize_mixed(vocab, input_suffix, false, false); if (llama_vocab_fim_rep(vocab) != LLAMA_TOKEN_NULL) { // TODO: make project name an input static const auto k_fim_repo = common_tokenize(vocab, "myproject\n", false, false); extra_tokens.push_back(llama_vocab_fim_rep(vocab)); extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end()); } for (const auto & chunk : input_extra) { // { "text": string, "filename": string } const std::string text = json_value(chunk, "text", std::string()); const std::string filename = json_value(chunk, "filename", std::string("tmp")); if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) { const auto k_fim_file = common_tokenize(vocab, filename + "\n", false, false); extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab)); extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end()); } else { // chunk separator in binary form to avoid confusing the AI static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00}; static const auto k_chunk_prefix_tokens = common_tokenize(vocab, k_chunk_prefix_str, false, false); extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end()); } const auto chunk_tokens = common_tokenize(vocab, text, false, false); extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end()); } if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) { // TODO: current filename static const auto k_fim_file = common_tokenize(vocab, "filename\n", false, false); extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab)); extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end()); } // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?) const int n_prefix_take = std::min(tokens_prefix.size(), 3*(n_batch/4)); const int n_suffix_take = std::min(tokens_suffix.size(), std::max(0, (n_batch/4) - (2 + tokens_prompt.size()))); SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take)); // fill the rest of the context with extra chunks const int n_extra_take = std::min(std::max(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size()); tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take); tokens_suffix.resize(n_suffix_take); tokens_prefix.insert(tokens_prefix.begin(), llama_vocab_fim_pre(vocab)); tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end()); tokens_suffix.insert(tokens_suffix.begin(), llama_vocab_fim_suf(vocab)); auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix; auto embd_end = spm_infill ? tokens_prefix : tokens_suffix; if (llama_vocab_get_add_bos(vocab)) { embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab)); } SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size()); // put the extra context before the FIM prefix embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end()); embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); embd_inp.push_back(llama_vocab_fim_mid(vocab)); return embd_inp; } // // base64 utils (TODO: move to common in the future) // static const std::string base64_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; static inline bool is_base64(uint8_t c) { return (isalnum(c) || (c == '+') || (c == '/')); } static inline raw_buffer base64_decode(const std::string & encoded_string) { int i = 0; int j = 0; int in_ = 0; int in_len = encoded_string.size(); uint8_t char_array_4[4]; uint8_t char_array_3[3]; raw_buffer ret; while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) { char_array_4[i++] = encoded_string[in_]; in_++; if (i == 4) { for (i = 0; i < 4; i++) { char_array_4[i] = base64_chars.find(char_array_4[i]); } char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; for (i = 0; (i < 3); i++) { ret.push_back(char_array_3[i]); } i = 0; } } if (i) { for (j = i; j < 4; j++) { char_array_4[j] = 0; } for (j = 0; j < 4; j++) { char_array_4[j] = base64_chars.find(char_array_4[j]); } char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; for (j = 0; j < i - 1; j++) { ret.push_back(char_array_3[j]); } } return ret; } // // random string / id // static std::string random_string() { static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"); std::random_device rd; std::mt19937 generator(rd()); std::string result(32, ' '); for (int i = 0; i < 32; ++i) { result[i] = str[generator() % str.size()]; } return result; } static std::string gen_chatcmplid() { return "chatcmpl-" + random_string(); } static std::string gen_tool_call_id() { return random_string(); } // // other common utils // static bool ends_with(const std::string & str, const std::string & suffix) { return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); } static size_t find_partial_stop_string(const std::string &stop, const std::string &text) { if (!text.empty() && !stop.empty()) { const char text_last_char = text.back(); for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) { if (stop[char_index] == text_last_char) { const std::string current_partial = stop.substr(0, char_index + 1); if (ends_with(text, current_partial)) { return text.size() - char_index - 1; } } } } return std::string::npos; } // TODO: reuse llama_detokenize template static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) { std::string ret; for (; begin != end; ++begin) { ret += common_token_to_piece(ctx, *begin); } return ret; } // format incomplete utf-8 multibyte character for output static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) { std::string out = token == LLAMA_TOKEN_NULL ? "" : common_token_to_piece(ctx, token); // if the size is 1 and first bit is 1, meaning it's a partial character // (size > 1 meaning it's already a known token) if (out.size() == 1 && (out[0] & 0x80) == 0x80) { std::stringstream ss; ss << std::hex << (out[0] & 0xff); std::string res(ss.str()); out = "byte: \\x" + res; } return out; } // // OAI utils // static json oaicompat_completion_params_parse(const json & body) { json llama_params; if (!body.contains("prompt")) { throw std::runtime_error("\"prompt\" is required"); } // Handle "stop" field if (body.contains("stop") && body.at("stop").is_string()) { llama_params["stop"] = json::array({body.at("stop").get()}); } else { llama_params["stop"] = json_value(body, "stop", json::array()); } // Handle "n" field int n_choices = json_value(body, "n", 1); if (n_choices != 1) { throw std::runtime_error("Only one completion choice is allowed"); } // Handle "echo" field if (json_value(body, "echo", false)) { throw std::runtime_error("Only no echo is supported"); } // Params supported by OAI but unsupported by llama.cpp static const std::vector unsupported_params { "best_of", "suffix" }; for (const auto & param : unsupported_params) { if (body.contains(param)) { throw std::runtime_error("Unsupported param: " + param); } } // Copy remaining properties to llama_params for (const auto & item : body.items()) { // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens" if (!llama_params.contains(item.key()) || item.key() == "n_predict") { llama_params[item.key()] = item.value(); } } return llama_params; } static json oaicompat_completion_params_parse( const json & body, /* openai api json semantics */ bool use_jinja, common_reasoning_format reasoning_format, const struct common_chat_templates * tmpls, bool allow_non_text, std::vector & out_files) { json llama_params; auto tools = json_value(body, "tools", json()); auto stream = json_value(body, "stream", false); if (tools.is_array() && !tools.empty()) { if (stream) { throw std::runtime_error("Cannot use tools with stream"); } if (!use_jinja) { throw std::runtime_error("tools param requires --jinja flag"); } } if (!use_jinja) { if (body.contains("tool_choice") && !body.at("tool_choice").is_null()) { throw std::runtime_error("Unsupported param: tool_choice"); } } // Handle "stop" field if (body.contains("stop") && body.at("stop").is_string()) { llama_params["stop"] = json::array({body.at("stop").get()}); } else { llama_params["stop"] = json_value(body, "stop", json::array()); } auto json_schema = json_value(body, "json_schema", json()); auto grammar = json_value(body, "grammar", std::string()); if (!json_schema.is_null() && !grammar.empty()) { throw std::runtime_error("Cannot use both json_schema and grammar"); } // Handle "response_format" field if (body.contains("response_format")) { json response_format = json_value(body, "response_format", json::object()); std::string response_type = json_value(response_format, "type", std::string()); if (response_type == "json_object") { json_schema = json_value(response_format, "schema", json::object()); } else if (response_type == "json_schema") { auto schema_wrapper = json_value(response_format, "json_schema", json::object()); json_schema = json_value(schema_wrapper, "schema", json::object()); } else if (!response_type.empty() && response_type != "text") { throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type); } } // get input files if (!body.contains("messages")) { throw std::runtime_error("'messages' is required"); } json messages = body.at("messages"); if (!messages.is_array()) { throw std::runtime_error("Expected 'messages' to be an array"); } for (auto & msg : messages) { json & content = msg.at("content"); if (content.is_string() || content.is_null()) { continue; } if (!content.is_array()) { throw std::runtime_error("Expected 'content' to be a string or an array"); } for (auto & p : content) { std::string type = json_value(p, "type", std::string()); json image_url = json_value(p, "image_url", json::object()); if (type == "image_url") { if (!allow_non_text) { throw std::runtime_error("image input is not supported by this server"); } std::string url = json_value(image_url, "url", std::string()); if (string_starts_with(url, "http")) { // download remote image // TODO @ngxson : maybe make these params configurable common_remote_params params; params.headers.push_back("User-Agent: llama.cpp/" + build_info); params.max_size = 1024 * 1024 * 10; // 10MB params.timeout = 10; // seconds SRV_INF("downloading image from '%s'\n", url.c_str()); auto res = common_remote_get_content(url, params); if (200 <= res.first && res.first < 300) { SRV_INF("downloaded %ld bytes\n", res.second.size()); raw_buffer data; data.insert(data.end(), res.second.begin(), res.second.end()); out_files.push_back(data); } else { throw std::runtime_error("Failed to download image"); } } else { // try to decode base64 image std::vector parts = string_split(url, /*separator*/ ','); if (parts.size() != 2) { throw std::runtime_error("Invalid image_url.url value"); } else if (!string_starts_with(parts[0], "data:image/")) { throw std::runtime_error("Invalid image_url.url format: " + parts[0]); } else if (!string_ends_with(parts[0], "base64")) { throw std::runtime_error("image_url.url must be base64 encoded"); } else { auto base64_data = parts[1]; auto decoded_data = base64_decode(base64_data); out_files.push_back(decoded_data); } } // replace this chunk with a marker p["type"] = "text"; p["text"] = MTMD_DEFAULT_IMAGE_MARKER; p.erase("image_url"); } } } common_chat_templates_inputs inputs; inputs.messages = common_chat_msgs_parse_oaicompat(messages); inputs.tools = common_chat_tools_parse_oaicompat(tools); inputs.tool_choice = common_chat_tool_choice_parse_oaicompat(json_value(body, "tool_choice", std::string("auto"))); inputs.json_schema = json_schema.is_null() ? "" : json_schema.dump(); inputs.grammar = grammar; inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true); inputs.use_jinja = use_jinja; inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false); inputs.extract_reasoning = reasoning_format != COMMON_REASONING_FORMAT_NONE; inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true); if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE && body.contains("grammar")) { throw std::runtime_error("Cannot use custom grammar constraints with tools."); } // if the assistant message appears at the end of list, we do not add end-of-turn token // for ex. this can be useful to modify the reasoning process in reasoning models bool prefill_assistant_message = !inputs.messages.empty() && inputs.messages.back().role == "assistant"; common_chat_msg last_message; if (prefill_assistant_message) { last_message = inputs.messages.back(); inputs.messages.pop_back(); /* sanity check, max one assistant message at the end of the list */ if (!inputs.messages.empty() && inputs.messages.back().role == "assistant"){ throw std::runtime_error("Cannot have 2 or more assistant messages at the end of the list."); } inputs.extract_reasoning = false; inputs.add_generation_prompt = true; } // Apply chat template to the list of messages auto chat_params = common_chat_templates_apply(tmpls, inputs); /* Append assistant prefilled message */ if (prefill_assistant_message) { chat_params.prompt += last_message.content; } llama_params["chat_format"] = static_cast(chat_params.format); llama_params["prompt"] = chat_params.prompt; if (!chat_params.grammar.empty()) { llama_params["grammar"] = chat_params.grammar; } llama_params["grammar_lazy"] = chat_params.grammar_lazy; auto grammar_triggers = json::array(); for (const auto & trigger : chat_params.grammar_triggers) { server_grammar_trigger ct(trigger); grammar_triggers.push_back(ct.to_json()); } llama_params["grammar_triggers"] = grammar_triggers; llama_params["preserved_tokens"] = chat_params.preserved_tokens; for (const auto & stop : chat_params.additional_stops) { llama_params["stop"].push_back(stop); } // Handle "n" field int n_choices = json_value(body, "n", 1); if (n_choices != 1) { throw std::runtime_error("Only one completion choice is allowed"); } // Handle "logprobs" field // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future if (json_value(body, "logprobs", false)) { llama_params["n_probs"] = json_value(body, "top_logprobs", 20); } else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) { throw std::runtime_error("top_logprobs requires logprobs to be set to true"); } // Copy remaining properties to llama_params // This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint. // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp for (const auto & item : body.items()) { // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens" if (!llama_params.contains(item.key()) || item.key() == "n_predict") { llama_params[item.key()] = item.value(); } } return llama_params; } static json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false) { json data = json::array(); int32_t n_tokens = 0; int i = 0; for (const auto & elem : embeddings) { json embedding_obj; if (use_base64) { const auto& vec = json_value(elem, "embedding", json::array()).get>(); const char* data_ptr = reinterpret_cast(vec.data()); size_t data_size = vec.size() * sizeof(float); embedding_obj = { {"embedding", base64::encode(data_ptr, data_size)}, {"index", i++}, {"object", "embedding"}, {"encoding_format", "base64"} }; } else { embedding_obj = { {"embedding", json_value(elem, "embedding", json::array())}, {"index", i++}, {"object", "embedding"} }; } data.push_back(embedding_obj); n_tokens += json_value(elem, "tokens_evaluated", 0); } json res = json { {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, {"object", "list"}, {"usage", json { {"prompt_tokens", n_tokens}, {"total_tokens", n_tokens} }}, {"data", data} }; return res; } static json format_response_rerank( const json & request, const json & ranks, bool is_tei_format, std::vector & texts) { json res; if (is_tei_format) { // TEI response format res = json::array(); bool return_text = json_value(request, "return_text", false); for (const auto & rank : ranks) { int index = json_value(rank, "index", 0); json elem = json{ {"index", index}, {"score", json_value(rank, "score", 0.0)}, }; if (return_text) { elem["text"] = std::move(texts[index]); } res.push_back(elem); } } else { // Jina response format json results = json::array(); int32_t n_tokens = 0; for (const auto & rank : ranks) { results.push_back(json{ {"index", json_value(rank, "index", 0)}, {"relevance_score", json_value(rank, "score", 0.0)}, }); n_tokens += json_value(rank, "tokens_evaluated", 0); } res = json{ {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, {"object", "list"}, {"usage", json{ {"prompt_tokens", n_tokens}, {"total_tokens", n_tokens} }}, {"results", results} }; } return res; } static bool is_valid_utf8(const std::string & str) { const unsigned char* bytes = reinterpret_cast(str.data()); const unsigned char* end = bytes + str.length(); while (bytes < end) { if (*bytes <= 0x7F) { // 1-byte sequence (0xxxxxxx) bytes++; } else if ((*bytes & 0xE0) == 0xC0) { // 2-byte sequence (110xxxxx 10xxxxxx) if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80) return false; bytes += 2; } else if ((*bytes & 0xF0) == 0xE0) { // 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx) if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80) return false; bytes += 3; } else if ((*bytes & 0xF8) == 0xF0) { // 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx) if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80) return false; bytes += 4; } else { // Invalid UTF-8 lead byte return false; } } return true; } static json format_tokenizer_response(const json & tokens) { return json { {"tokens", tokens} }; } static json format_detokenized_response(const std::string & content) { return json { {"content", content} }; } static json format_logit_bias(const std::vector & logit_bias) { json data = json::array(); for (const auto & lb : logit_bias) { data.push_back(json{ {"bias", lb.bias}, {"token", lb.token}, }); } return data; } static std::string safe_json_to_str(const json & data) { return data.dump(-1, ' ', false, json::error_handler_t::replace); } static std::vector get_token_probabilities(llama_context * ctx, int idx) { std::vector cur; const auto * logits = llama_get_logits_ith(ctx, idx); const llama_model * model = llama_get_model(ctx); const llama_vocab * vocab = llama_model_get_vocab(model); const int n_vocab = llama_vocab_n_tokens(vocab); cur.resize(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f}; } // sort tokens by logits std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); // apply softmax float max_l = cur[0].logit; float cum_sum = 0.0f; for (size_t i = 0; i < cur.size(); ++i) { float p = expf(cur[i].logit - max_l); cur[i].p = p; cum_sum += p; } for (size_t i = 0; i < cur.size(); ++i) { cur[i].p /= cum_sum; } return cur; } static bool are_lora_equal( const std::vector & l1, const std::vector & l2) { if (l1.size() != l2.size()) { return false; } for (size_t i = 0; i < l1.size(); ++i) { // we don't check lora.path to reduce the time complexity if (l1[i].scale != l2[i].scale || l1[i].ptr != l2[i].ptr) { return false; } } return true; } // parse lora config from JSON request, returned a copy of lora_base with updated scale static std::vector parse_lora_request( const std::vector & lora_base, const json & data) { std::vector lora(lora_base); int max_idx = lora.size(); // clear existing value for (auto & entry : lora) { entry.scale = 0.0f; } // set value for (const auto & entry : data) { int id = json_value(entry, "id", -1); float scale = json_value(entry, "scale", 0.0f); if (0 <= id && id < max_idx) { lora[id].scale = scale; } else { throw std::runtime_error("invalid adapter id"); } } return lora; } // // utils for interacting with libmtmd // (may need to refactor in near future) // /** * server_tokens is a helper to manage the input tokens and image for the server. * it is made this way to simplify the logic of KV cache management. */ struct server_tokens { bool has_mtmd = false; private: // disallow accessing these members directly, risking out-of-sync // map a **start** position in tokens to the image chunk std::unordered_map map_pos_to_image; // list of tokens // it can include LLAMA_TOKEN_NULL, which is used to indicate a token that is not a text token // a mtmd_input_chunk can occupy multiple tokens, one llama_token per **position** // important: for models using mrope, an image can contain multiple tokens but will use only one **position** llama_tokens tokens; // for ex. with input of 5 text tokens and 2 images: // [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1] // pos 0 1 2 3 4 5 6 7 8 9 // map_pos_to_image will contain: {5, img0}, {8, img1} public: server_tokens() = default; ~server_tokens() = default; // Prevent copying server_tokens(const server_tokens&) = delete; server_tokens& operator=(const server_tokens&) = delete; // Allow moving (usually implicitly generated if members are movable) server_tokens(server_tokens&&) = default; server_tokens& operator=(server_tokens&&) = default; // Allow accessing elements using [] operator llama_token operator[](size_t index) { return tokens[index]; } const llama_token& operator[](size_t index) const { return tokens[index]; } server_tokens(mtmd::input_chunks & mtmd_chunks, bool has_mtmd) : has_mtmd(has_mtmd) { for (size_t i = 0; i < mtmd_chunks.size(); ++i) { push_back(mtmd_chunks[i]); } } server_tokens(llama_tokens & tokens, bool has_mtmd) : has_mtmd(has_mtmd), tokens(tokens) {} // for debugging std::string str() const { std::ostringstream oss; oss << "tokens: "; for (const auto & t : tokens) { if (t == LLAMA_TOKEN_NULL) { oss << " "; } else { oss << t << " "; } } oss << "\n"; oss << "image pos: "; for (const auto & it : map_pos_to_image) { oss << it.first << ", "; } return oss.str(); } const mtmd::input_chunk_ptr & find_chunk(llama_pos pos) const { auto it = map_pos_to_image.find(pos); if (it != map_pos_to_image.end()) { return it->second; } else { throw std::runtime_error("Chunk not found"); } } void push_back(llama_token tok) { if (tok == LLAMA_TOKEN_NULL) { throw std::runtime_error("Invalid token"); } tokens.emplace_back(tok); } // will create a copy of the chunk if it contains non-text data void push_back(const mtmd_input_chunk * chunk) { auto type = mtmd_input_chunk_get_type(chunk); if (type == MTMD_INPUT_CHUNK_TYPE_IMAGE) { GGML_ASSERT(has_mtmd); auto img_tokens = mtmd_input_chunk_get_tokens_image(chunk); const int n_pos = mtmd_image_tokens_get_n_pos(img_tokens); llama_pos start_pos = tokens.size(); for (int i = 0; i < n_pos; ++i) { tokens.emplace_back(LLAMA_TOKEN_NULL); } mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk)); map_pos_to_image[start_pos] = std::move(new_chunk); } else if (type == MTMD_INPUT_CHUNK_TYPE_TEXT) { size_t n_tokens; auto text_tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens); for (size_t i = 0; i < n_tokens; ++i) { push_back(text_tokens[i]); } } else { GGML_ABORT("Invalid chunk type"); } } // for compatibility with context shift and prompt truncation void insert(const llama_tokens & inp_tokens) { GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled tokens.insert(tokens.end(), inp_tokens.begin(), inp_tokens.end()); } // for compatibility with speculative decoding, ctx shift, slot save/load const llama_tokens & get_text_tokens() const { GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled return tokens; } // for compatibility with speculative decoding void set_token(llama_pos pos, llama_token id) { GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled tokens[pos] = id; } size_t size() const { return tokens.size(); } bool empty() const { return tokens.empty(); } void clear() { tokens.clear(); } void resize(size_t n) { GGML_ASSERT(n <= tokens.size()); if (has_mtmd) { // we throw an error if we try to remove a token in the middle of an image // for ex. with input of 5 text tokens and 2 images: // [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1] // n 1 2 3 4 5 6 7 8 9 10 // allowed to resize ^ ^ // disallowed to resize ^ ^ ^ if (n > 0) { llama_token last_token = tokens[n - 1]; // make sure we never remove tokens in the middle of an image if (last_token == LLAMA_TOKEN_NULL) { find_chunk(n - 1); // will throw an error if the token is not begin-of-chunk } } // remove all image chunks that are not used anymore for (auto it = map_pos_to_image.begin(); it != map_pos_to_image.end(); ) { llama_pos pos = it->first; if (pos >= (llama_pos)n) { it = map_pos_to_image.erase(it); } else { ++it; } } } tokens.resize(n); } std::string detokenize(const llama_context * ctx, bool special) const { llama_tokens text_tokens; text_tokens.reserve(tokens.size()); for (const auto & t : tokens) { if (t != LLAMA_TOKEN_NULL) { text_tokens.push_back(t); } } return common_detokenize(ctx, text_tokens, special); } size_t get_common_prefix(const server_tokens & b) const { size_t max_idx = std::min(tokens.size(), b.tokens.size()); for (size_t i = 0; i < max_idx; ++i) { auto & ai = tokens[i]; auto & bi = b.tokens[i]; if (ai == LLAMA_TOKEN_NULL && bi == LLAMA_TOKEN_NULL) { GGML_ASSERT(has_mtmd); const auto & a_chunk = find_chunk(i); const auto & b_chunk = b.find_chunk(i); GGML_ASSERT(a_chunk && b_chunk); const auto * a_img = mtmd_input_chunk_get_tokens_image(a_chunk.get()); const auto * b_img = mtmd_input_chunk_get_tokens_image(b_chunk.get()); std::string ai_id = mtmd_image_tokens_get_id(a_img); std::string bi_id = mtmd_image_tokens_get_id(b_img); size_t a_pos = mtmd_image_tokens_get_n_pos(a_img); size_t b_pos = mtmd_image_tokens_get_n_pos(b_img); if (ai_id == bi_id && a_pos == b_pos) { GGML_ASSERT(a_pos > 0 && "Invalid image token"); // should never happen i += a_pos - 1; // will be +1 by the for loop continue; } else { return i; } } else if (ai == bi) { continue; } else { return i; } } return max_idx; // all tokens are equal } // make sure all text tokens are within the vocab range bool validate(const struct llama_context * ctx) const { const llama_model * model = llama_get_model(ctx); const llama_vocab * vocab = llama_model_get_vocab(model); const int32_t n_vocab = llama_vocab_n_tokens(vocab); for (size_t i = 0; i < tokens.size(); ++i) { auto & t = tokens[i]; if (t == LLAMA_TOKEN_NULL) { try { const auto & chunk = find_chunk(i); const auto * img_tokens = mtmd_input_chunk_get_tokens_image(chunk.get()); size_t n_pos = mtmd_image_tokens_get_n_pos(img_tokens); i += n_pos - 1; // will be +1 by the for loop } catch (const std::exception & e) { return false; } } else if (t < 0 || t >= n_vocab) { return false; } } return true; } // encode and decode the image chunk int32_t process_chunk( llama_context * ctx, mtmd_context * mctx, llama_pos n_past, int32_t seq_id, llama_pos & n_pos_out) { auto it = map_pos_to_image.find(n_past); if (it == map_pos_to_image.end()) { throw std::runtime_error("Chunk not found"); } SRV_INF("%s\n", "processing image..."); int32_t n_batch = llama_n_batch(ctx); int64_t t0 = ggml_time_ms(); llama_pos new_n_past = n_past; int32_t result = mtmd_helper_eval_chunk_single(mctx, ctx, it->second.get(), // chunk n_past, seq_id, n_batch, true, // logits last &new_n_past); SRV_INF("image processed in %" PRId64 " ms\n", ggml_time_ms() - t0); if (result != 0) { LOG_ERR("mtmd_helper_eval failed with status %d", result); n_pos_out = n_past; return result; } n_pos_out = new_n_past; return 0; } }; // Computes FNV-1a hash of the data static std::string fnv_hash(const uint8_t * data, size_t len) { const uint64_t fnv_prime = 0x100000001b3ULL; uint64_t hash = 0xcbf29ce484222325ULL; for (size_t i = 0; i < len; ++i) { hash ^= data[i]; hash *= fnv_prime; } return std::to_string(hash); }