Compare commits

..

No commits in common. "master" and "v2.12.1" have entirely different histories.

928 changed files with 57876 additions and 318015 deletions

View file

@ -1,17 +0,0 @@
#!/bin/bash
cd /workspace
# Get the files into the volume without a bind mount
if [ ! -d ".git" ]; then
git clone https://github.com/mudler/LocalAI.git .
else
git fetch
fi
echo "Standard Post-Create script completed."
if [ -f "/devcontainer-customization/postcreate.sh" ]; then
echo "Launching customization postcreate.sh"
bash "/devcontainer-customization/postcreate.sh"
fi

View file

@ -1,16 +0,0 @@
#!/bin/bash
cd /workspace
# Grab the pre-stashed backend assets to avoid build issues
cp -r /build/backend-assets /workspace/backend-assets
# Ensures generated source files are present upon load
make prepare
echo "Standard Post-Start script completed."
if [ -f "/devcontainer-customization/poststart.sh" ]; then
echo "Launching customization poststart.sh"
bash "/devcontainer-customization/poststart.sh"
fi

View file

@ -1,55 +0,0 @@
#!/bin/bash
# This file contains some really simple functions that are useful when building up customization scripts.
# Checks if the git config has a user registered - and sets it up if not.
#
# Param 1: name
# Param 2: email
#
config_user() {
echo "Configuring git for $1 <$2>"
local gcn=$(git config --global user.name)
if [ -z "${gcn}" ]; then
echo "Setting up git user / remote"
git config --global user.name "$1"
git config --global user.email "$2"
fi
}
# Checks if the git remote is configured - and sets it up if not. Fetches either way.
#
# Param 1: remote name
# Param 2: remote url
#
config_remote() {
echo "Adding git remote and fetching $2 as $1"
local gr=$(git remote -v | grep $1)
if [ -z "${gr}" ]; then
git remote add $1 $2
fi
git fetch $1
}
# Setup special .ssh files
# Prints out lines of text to make things pretty
# Param 1: bash array, filenames relative to the customization directory that should be copied to ~/.ssh
setup_ssh() {
echo "starting ~/.ssh directory setup..."
mkdir -p "${HOME}.ssh"
chmod 0700 "${HOME}/.ssh"
echo "-----"
local files=("$@")
for file in "${files[@]}" ; do
local cfile="/devcontainer-customization/${file}"
local hfile="${HOME}/.ssh/${file}"
if [ ! -f "${hfile}" ]; then
echo "copying \"${file}\""
cp "${cfile}" "${hfile}"
chmod 600 "${hfile}"
fi
done
echo "~/.ssh directory setup complete!"
}

View file

@ -1,25 +0,0 @@
Place any additional resources your environment requires in this directory
Script hooks are currently called for:
`postcreate.sh` and `poststart.sh`
If files with those names exist here, they will be called at the end of the normal script.
This is a good place to set things like `git config --global user.name` are set - and to handle any other files that are mounted via this directory.
To assist in doing so, `source /.devcontainer-scripts/utils.sh` will provide utility functions that may be useful - for example:
```
#!/bin/bash
source "/.devcontainer-scripts/utils.sh"
sshfiles=("config", "key.pub")
setup_ssh "${sshfiles[@]}"
config_user "YOUR NAME" "YOUR EMAIL"
config_remote "REMOTE NAME" "REMOTE URL"
```

View file

@ -1,24 +0,0 @@
{
"$schema": "https://raw.githubusercontent.com/devcontainers/spec/main/schemas/devContainer.schema.json",
"name": "LocalAI",
"workspaceFolder": "/workspace",
"dockerComposeFile": [ "./docker-compose-devcontainer.yml" ],
"service": "api",
"shutdownAction": "stopCompose",
"customizations": {
"vscode": {
"extensions": [
"golang.go",
"ms-vscode.makefile-tools",
"ms-azuretools.vscode-docker",
"ms-python.python",
"ms-python.debugpy",
"wayou.vscode-todo-highlight",
"waderyan.gitblame"
]
}
},
"forwardPorts": [8080, 3000],
"postCreateCommand": "bash /.devcontainer-scripts/postcreate.sh",
"postStartCommand": "bash /.devcontainer-scripts/poststart.sh"
}

View file

@ -1,48 +0,0 @@
services:
api:
build:
context: ..
dockerfile: Dockerfile
target: devcontainer
args:
- FFMPEG=true
- IMAGE_TYPE=extras
- GO_TAGS=p2p tts
env_file:
- ../.env
ports:
- 8080:8080
volumes:
- localai_workspace:/workspace
- ../models:/host-models
- ./customization:/devcontainer-customization
command: /bin/sh -c "while sleep 1000; do :; done"
cap_add:
- SYS_PTRACE
security_opt:
- seccomp:unconfined
prometheus:
image: prom/prometheus
container_name: prometheus
command:
- '--config.file=/etc/prometheus/prometheus.yml'
ports:
- 9090:9090
restart: unless-stopped
volumes:
- ./prometheus:/etc/prometheus
- prom_data:/prometheus
grafana:
image: grafana/grafana
container_name: grafana
ports:
- 3000:3000
restart: unless-stopped
environment:
- GF_SECURITY_ADMIN_USER=admin
- GF_SECURITY_ADMIN_PASSWORD=grafana
volumes:
- ./grafana:/etc/grafana/provisioning/datasources
volumes:
prom_data:
localai_workspace:

View file

@ -1,10 +0,0 @@
apiVersion: 1
datasources:
- name: Prometheus
type: prometheus
url: http://prometheus:9090
isDefault: true
access: proxy
editable: true

View file

@ -1,21 +0,0 @@
global:
scrape_interval: 15s
scrape_timeout: 10s
evaluation_interval: 15s
alerting:
alertmanagers:
- static_configs:
- targets: []
scheme: http
timeout: 10s
api_version: v1
scrape_configs:
- job_name: prometheus
honor_timestamps: true
scrape_interval: 15s
scrape_timeout: 10s
metrics_path: /metrics
scheme: http
static_configs:
- targets:
- localhost:9090

View file

@ -1,17 +1,6 @@
.idea
.github
.vscode
.devcontainer
models
examples/chatbot-ui/models
examples/rwkv/models
examples/**/models
Dockerfile*
__pycache__
# SonarQube
.scannerwork
# backend virtual environments
**/venv
backend/python/**/source

64
.env
View file

@ -1,36 +1,33 @@
## Set number of threads.
## Note: prefer the number of physical cores. Overbooking the CPU degrades performance notably.
# LOCALAI_THREADS=14
# THREADS=14
## Specify a different bind address (defaults to ":8080")
# LOCALAI_ADDRESS=127.0.0.1:8080
# ADDRESS=127.0.0.1:8080
## Default models context size
# LOCALAI_CONTEXT_SIZE=512
# CONTEXT_SIZE=512
#
## Define galleries.
## models will to install will be visible in `/models/available`
# LOCALAI_GALLERIES=[{"name":"localai", "url":"github:mudler/LocalAI/gallery/index.yaml@master"}]
# GALLERIES=[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}]
## CORS settings
# LOCALAI_CORS=true
# LOCALAI_CORS_ALLOW_ORIGINS=*
# CORS=true
# CORS_ALLOW_ORIGINS=*
## Default path for models
#
# LOCALAI_MODELS_PATH=/models
# MODELS_PATH=/models
## Enable debug mode
# LOCALAI_LOG_LEVEL=debug
# DEBUG=true
## Disables COMPEL (Diffusers)
# COMPEL=0
## Enable/Disable single backend (useful if only one GPU is available)
# LOCALAI_SINGLE_ACTIVE_BACKEND=true
# Forces shutdown of the backends if busy (only if LOCALAI_SINGLE_ACTIVE_BACKEND is set)
# LOCALAI_FORCE_BACKEND_SHUTDOWN=true
# SINGLE_ACTIVE_BACKEND=true
## Specify a build type. Available: cublas, openblas, clblas.
## cuBLAS: This is a GPU-accelerated version of the complete standard BLAS (Basic Linear Algebra Subprograms) library. It's provided by Nvidia and is part of their CUDA toolkit.
@ -41,21 +38,21 @@
## Uncomment and set to true to enable rebuilding from source
# REBUILD=true
## Enable go tags, available: p2p, tts
## p2p: enable distributed inferencing
## Enable go tags, available: stablediffusion, tts
## stablediffusion: image generation with stablediffusion
## tts: enables text-to-speech with go-piper
## (requires REBUILD=true)
#
# GO_TAGS=p2p
# GO_TAGS=stablediffusion
## Path where to store generated images
# LOCALAI_IMAGE_PATH=/tmp/generated/images
# IMAGE_PATH=/tmp
## Specify a default upload limit in MB (whisper)
# LOCALAI_UPLOAD_LIMIT=15
# UPLOAD_LIMIT
## List of external GRPC backends (note on the container image this variable is already set to use extra backends available in extra/)
# LOCALAI_EXTERNAL_GRPC_BACKENDS=my-backend:127.0.0.1:9000,my-backend2:/usr/bin/backend.py
# EXTERNAL_GRPC_BACKENDS=my-backend:127.0.0.1:9000,my-backend2:/usr/bin/backend.py
### Advanced settings ###
### Those are not really used by LocalAI, but from components in the stack ###
@ -74,36 +71,19 @@
### Define the number of parallel LLAMA.cpp workers (Defaults to 1)
# LLAMACPP_PARALLEL=1
### Define a list of GRPC Servers for llama-cpp workers to distribute the load
# https://github.com/ggerganov/llama.cpp/pull/6829
# https://github.com/ggerganov/llama.cpp/blob/master/tools/rpc/README.md
# LLAMACPP_GRPC_SERVERS=""
### Enable to run parallel requests
# LOCALAI_PARALLEL_REQUESTS=true
# Enable to allow p2p mode
# LOCALAI_P2P=true
# Enable to use federated mode
# LOCALAI_FEDERATED=true
# Enable to start federation server
# FEDERATED_SERVER=true
# Define to use federation token
# TOKEN=""
# PARALLEL_REQUESTS=true
### Watchdog settings
###
# Enables watchdog to kill backends that are inactive for too much time
# LOCALAI_WATCHDOG_IDLE=true
#
# Time in duration format (e.g. 1h30m) after which a backend is considered idle
# LOCALAI_WATCHDOG_IDLE_TIMEOUT=5m
# WATCHDOG_IDLE=true
#
# Enables watchdog to kill backends that are busy for too much time
# LOCALAI_WATCHDOG_BUSY=true
# WATCHDOG_BUSY=true
#
# Time in duration format (e.g. 1h30m) after which a backend is considered idle
# WATCHDOG_IDLE_TIMEOUT=5m
#
# Time in duration format (e.g. 1h30m) after which a backend is considered busy
# LOCALAI_WATCHDOG_BUSY_TIMEOUT=5m
# WATCHDOG_BUSY_TIMEOUT=5m

1
.gitattributes vendored
View file

@ -1,2 +1 @@
*.sh text eol=lf
backend/cpp/llama/*.hpp linguist-vendored

13
.github/bump_deps.sh vendored
View file

@ -6,17 +6,4 @@ VAR=$3
LAST_COMMIT=$(curl -s -H "Accept: application/vnd.github.VERSION.sha" "https://api.github.com/repos/$REPO/commits/$BRANCH")
# Read $VAR from Makefile (only first match)
set +e
CURRENT_COMMIT="$(grep -m1 "^$VAR?=" Makefile | cut -d'=' -f2)"
set -e
sed -i Makefile -e "s/$VAR?=.*/$VAR?=$LAST_COMMIT/"
if [ -z "$CURRENT_COMMIT" ]; then
echo "Could not find $VAR in Makefile."
exit 0
fi
echo "Changes: https://github.com/$REPO/compare/${CURRENT_COMMIT}..${LAST_COMMIT}" >> "${VAR}_message.txt"
echo "${LAST_COMMIT}" >> "${VAR}_commit.txt"

View file

@ -2,6 +2,6 @@
set -xe
REPO=$1
LATEST_TAG=$(curl -s "https://api.github.com/repos/$REPO/releases/latest" | jq -r '.tag_name')
LATEST_TAG=$(curl -s "https://api.github.com/repos/$REPO/releases/latest" | jq -r '.name')
cat <<< $(jq ".version = \"$LATEST_TAG\"" docs/data/version.json) > docs/data/version.json

View file

@ -1,85 +0,0 @@
import hashlib
from huggingface_hub import hf_hub_download, get_paths_info
import requests
import sys
import os
uri = sys.argv[1]
file_name = uri.split('/')[-1]
# Function to parse the URI and determine download method
def parse_uri(uri):
if uri.startswith('huggingface://'):
repo_id = uri.split('://')[1]
return 'huggingface', repo_id.rsplit('/', 1)[0]
elif 'huggingface.co' in uri:
parts = uri.split('/resolve/')
if len(parts) > 1:
repo_path = parts[0].split('https://huggingface.co/')[-1]
return 'huggingface', repo_path
return 'direct', uri
def calculate_sha256(file_path):
sha256_hash = hashlib.sha256()
with open(file_path, 'rb') as f:
for byte_block in iter(lambda: f.read(4096), b''):
sha256_hash.update(byte_block)
return sha256_hash.hexdigest()
def manual_safety_check_hf(repo_id):
scanResponse = requests.get('https://huggingface.co/api/models/' + repo_id + "/scan")
scan = scanResponse.json()
# Check if 'hasUnsafeFile' exists in the response
if 'hasUnsafeFile' in scan:
if scan['hasUnsafeFile']:
return scan
else:
return None
else:
return None
download_type, repo_id_or_url = parse_uri(uri)
new_checksum = None
file_path = None
# Decide download method based on URI type
if download_type == 'huggingface':
# Check if the repo is flagged as dangerous by HF
hazard = manual_safety_check_hf(repo_id_or_url)
if hazard != None:
print(f'Error: HuggingFace has detected security problems for {repo_id_or_url}: {str(hazard)}', filename=file_name)
sys.exit(5)
# Use HF API to pull sha
for file in get_paths_info(repo_id_or_url, [file_name], repo_type='model'):
try:
new_checksum = file.lfs.sha256
break
except Exception as e:
print(f'Error from Hugging Face Hub: {str(e)}', file=sys.stderr)
sys.exit(2)
if new_checksum is None:
try:
file_path = hf_hub_download(repo_id=repo_id_or_url, filename=file_name)
except Exception as e:
print(f'Error from Hugging Face Hub: {str(e)}', file=sys.stderr)
sys.exit(2)
else:
response = requests.get(repo_id_or_url)
if response.status_code == 200:
with open(file_name, 'wb') as f:
f.write(response.content)
file_path = file_name
elif response.status_code == 404:
print(f'File not found: {response.status_code}', file=sys.stderr)
sys.exit(2)
else:
print(f'Error downloading file: {response.status_code}', file=sys.stderr)
sys.exit(1)
if new_checksum is None:
new_checksum = calculate_sha256(file_path)
print(new_checksum)
os.remove(file_path)
else:
print(new_checksum)

View file

@ -1,63 +0,0 @@
#!/bin/bash
# This scripts needs yq and huggingface_hub to be installed
# to install hugingface_hub run pip install huggingface_hub
# Path to the input YAML file
input_yaml=$1
# Function to download file and check checksum using Python
function check_and_update_checksum() {
model_name="$1"
file_name="$2"
uri="$3"
old_checksum="$4"
idx="$5"
# Download the file and calculate new checksum using Python
new_checksum=$(python3 ./.github/check_and_update.py $uri)
result=$?
if [[ $result -eq 5 ]]; then
echo "Contaminated entry detected, deleting entry for $model_name..."
yq eval -i "del([$idx])" "$input_yaml"
return
fi
if [[ "$new_checksum" == "" ]]; then
echo "Error calculating checksum for $file_name. Skipping..."
return
fi
echo "Checksum for $file_name: $new_checksum"
# Compare and update the YAML file if checksums do not match
if [[ $result -eq 2 ]]; then
echo "File not found, deleting entry for $file_name..."
# yq eval -i "del(.[$idx].files[] | select(.filename == \"$file_name\"))" "$input_yaml"
elif [[ "$old_checksum" != "$new_checksum" ]]; then
echo "Checksum mismatch for $file_name. Updating..."
yq eval -i "del(.[$idx].files[] | select(.filename == \"$file_name\").sha256)" "$input_yaml"
yq eval -i "(.[$idx].files[] | select(.filename == \"$file_name\")).sha256 = \"$new_checksum\"" "$input_yaml"
elif [[ $result -ne 0 ]]; then
echo "Error downloading file $file_name. Skipping..."
else
echo "Checksum match for $file_name. No update needed."
fi
}
# Read the YAML and process each file
len=$(yq eval '. | length' "$input_yaml")
for ((i=0; i<$len; i++))
do
name=$(yq eval ".[$i].name" "$input_yaml")
files_len=$(yq eval ".[$i].files | length" "$input_yaml")
for ((j=0; j<$files_len; j++))
do
filename=$(yq eval ".[$i].files[$j].filename" "$input_yaml")
uri=$(yq eval ".[$i].files[$j].uri" "$input_yaml")
checksum=$(yq eval ".[$i].files[$j].sha256" "$input_yaml")
echo "Checking model $name, file $filename. URI = $uri, Checksum = $checksum"
check_and_update_checksum "$name" "$filename" "$uri" "$checksum" "$i"
done
done

View file

@ -1,304 +0,0 @@
package main
import (
"fmt"
"html/template"
"io/ioutil"
"os"
"github.com/microcosm-cc/bluemonday"
"gopkg.in/yaml.v3"
)
var modelPageTemplate string = `
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>LocalAI models</title>
<link href="https://cdnjs.cloudflare.com/ajax/libs/flowbite/2.3.0/flowbite.min.css" rel="stylesheet" />
<script src="https://cdn.jsdelivr.net/npm/vanilla-lazyload@19.1.3/dist/lazyload.min.js"></script>
<link
rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/highlightjs/cdn-release@11.8.0/build/styles/default.min.css"
/>
<script
defer
src="https://cdn.jsdelivr.net/gh/highlightjs/cdn-release@11.8.0/build/highlight.min.js"
></script>
<script
defer
src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"
></script>
<script
defer
src="https://cdn.jsdelivr.net/npm/marked/marked.min.js"
></script>
<script
defer
src="https://cdn.jsdelivr.net/npm/dompurify@3.0.6/dist/purify.min.js"
></script>
<link href="/static/general.css" rel="stylesheet" />
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700&family=Roboto:wght@400;500&display=swap" rel="stylesheet">
<link
href="https://fonts.googleapis.com/css?family=Roboto:300,400,500,700,900&display=swap"
rel="stylesheet" />
<link
rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/tw-elements/css/tw-elements.min.css" />
<script src="https://cdn.tailwindcss.com/3.3.0"></script>
<script>
tailwind.config = {
darkMode: "class",
theme: {
fontFamily: {
sans: ["Roboto", "sans-serif"],
body: ["Roboto", "sans-serif"],
mono: ["ui-monospace", "monospace"],
},
},
corePlugins: {
preflight: false,
},
};
</script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.1.1/css/all.min.css">
<script src="https://unpkg.com/htmx.org@1.9.12" integrity="sha384-ujb1lZYygJmzgSwoxRggbCHcjc0rB2XoQrxeTUQyRjrOnlCoYta87iKBWq3EsdM2" crossorigin="anonymous"></script>
</head>
<body class="bg-gray-900 text-gray-200">
<div class="flex flex-col min-h-screen">
<nav class="bg-gray-800 shadow-lg">
<div class="container mx-auto px-4 py-4">
<div class="flex items-center justify-between">
<div class="flex items-center">
<a href="/" class="text-white text-xl font-bold"><img src="https://github.com/mudler/LocalAI/assets/2420543/0966aa2a-166e-4f99-a3e5-6c915fc997dd" alt="LocalAI Logo" class="h-10 mr-3 border-2 border-gray-300 shadow rounded"></a>
<a href="/" class="text-white text-xl font-bold">LocalAI</a>
</div>
<!-- Menu button for small screens -->
<div class="lg:hidden">
<button id="menu-toggle" class="text-gray-400 hover:text-white focus:outline-none">
<i class="fas fa-bars fa-lg"></i>
</button>
</div>
<!-- Navigation links -->
<div class="hidden lg:flex lg:items-center lg:justify-end lg:flex-1 lg:w-0">
<a href="https://localai.io" class="text-gray-400 hover:text-white px-3 py-2 rounded" target="_blank" ><i class="fas fa-book-reader pr-2"></i> Documentation</a>
</div>
</div>
<!-- Collapsible menu for small screens -->
<div class="hidden lg:hidden" id="mobile-menu">
<div class="pt-4 pb-3 border-t border-gray-700">
<a href="https://localai.io" class="block text-gray-400 hover:text-white px-3 py-2 rounded mt-1" target="_blank" ><i class="fas fa-book-reader pr-2"></i> Documentation</a>
</div>
</div>
</div>
</nav>
<style>
.is-hidden {
display: none;
}
</style>
<div class="container mx-auto px-4 flex-grow">
<div class="models mt-12">
<h2 class="text-center text-3xl font-semibold text-gray-100">
LocalAI model gallery list </h2><br>
<h2 class="text-center text-3xl font-semibold text-gray-100">
🖼 Available {{.AvailableModels}} models</i> <a href="https://localai.io/models/" target="_blank" >
<i class="fas fa-circle-info pr-2"></i>
</a></h2>
<h3>
Refer to the Model gallery <a href="https://localai.io/models/" target="_blank" ><i class="fas fa-circle-info pr-2"></i></a> for more information on how to use the models with LocalAI.<br>
You can install models with the CLI command <code>local-ai models install <model-name></code>. or by using the WebUI.
</h3>
<input class="form-control appearance-none block w-full mt-5 px-3 py-2 text-base font-normal text-gray-300 pb-2 mb-5 bg-gray-800 bg-clip-padding border border-solid border-gray-600 rounded transition ease-in-out m-0 focus:text-gray-300 focus:bg-gray-900 focus:border-blue-500 focus:outline-none" type="search"
id="searchbox" placeholder="Live search keyword..">
<div class="dark grid grid-cols-1 grid-rows-1 md:grid-cols-3 block rounded-lg shadow-secondary-1 dark:bg-surface-dark">
{{ range $_, $model := .Models }}
<div class="box me-4 mb-2 block rounded-lg bg-white shadow-secondary-1 dark:bg-gray-800 dark:bg-surface-dark dark:text-white text-surface pb-2">
<div>
{{ $icon := "https://upload.wikimedia.org/wikipedia/commons/6/65/No-Image-Placeholder.svg" }}
{{ if $model.Icon }}
{{ $icon = $model.Icon }}
{{ end }}
<div class="flex justify-center items-center">
<img data-src="{{ $icon }}" alt="{{$model.Name}}" class="rounded-t-lg max-h-48 max-w-96 object-cover mt-3 lazy">
</div>
<div class="p-6 text-surface dark:text-white">
<h5 class="mb-2 text-xl font-medium leading-tight">{{$model.Name}}</h5>
<p class="mb-4 text-base truncate">{{ $model.Description }}</p>
</div>
<div class="px-6 pt-4 pb-2">
<!-- Modal toggle -->
<button data-modal-target="{{ $model.Name}}-modal" data-modal-toggle="{{ $model.Name }}-modal" class="block text-white bg-blue-700 hover:bg-blue-800 focus:ring-4 focus:outline-none focus:ring-blue-300 font-medium rounded-lg text-sm px-5 py-2.5 text-center dark:bg-blue-600 dark:hover:bg-blue-700 dark:focus:ring-blue-800" type="button">
More info
</button>
<!-- Main modal -->
<div id="{{ $model.Name}}-modal" tabindex="-1" aria-hidden="true" class="hidden overflow-y-auto overflow-x-hidden fixed top-0 right-0 left-0 z-50 justify-center items-center w-full md:inset-0 h-[calc(100%-1rem)] max-h-full">
<div class="relative p-4 w-full max-w-2xl max-h-full">
<!-- Modal content -->
<div class="relative bg-white rounded-lg shadow dark:bg-gray-700">
<!-- Modal header -->
<div class="flex items-center justify-between p-4 md:p-5 border-b rounded-t dark:border-gray-600">
<h3 class="text-xl font-semibold text-gray-900 dark:text-white">
{{ $model.Name}}
</h3>
<button type="button" class="text-gray-400 bg-transparent hover:bg-gray-200 hover:text-gray-900 rounded-lg text-sm w-8 h-8 ms-auto inline-flex justify-center items-center dark:hover:bg-gray-600 dark:hover:text-white" data-modal-hide="{{$model.Name}}-modal">
<svg class="w-3 h-3" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 14 14">
<path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="m1 1 6 6m0 0 6 6M7 7l6-6M7 7l-6 6"/>
</svg>
<span class="sr-only">Close modal</span>
</button>
</div>
<!-- Modal body -->
<div class="p-4 md:p-5 space-y-4">
<div class="flex justify-center items-center">
<img data-src="{{ $icon }}" alt="{{$model.Name}}" class="lazy rounded-t-lg max-h-48 max-w-96 object-cover mt-3">
</div>
<p class="text-base leading-relaxed text-gray-500 dark:text-gray-400">
{{ $model.Description }}
</p>
<p class="text-base leading-relaxed text-gray-500 dark:text-gray-400">
To install the model with the CLI, run: <br>
<code> local-ai models install {{$model.Name}} </code> <br>
<hr>
See also <a href="https://localai.io/models/" target="_blank" >
Installation <i class="fas fa-circle-info pr-2"></i>
</a> to see how to install models with the REST API.
</p>
<p class="text-base leading-relaxed text-gray-500 dark:text-gray-400">
<ul>
{{ range $_, $u := $model.URLs }}
<li><a href="{{ $u }}" target=_blank><i class="fa-solid fa-link"></i> {{ $u }}</a></li>
{{ end }}
</ul>
</p>
</div>
<!-- Modal footer -->
<div class="flex items-center p-4 md:p-5 border-t border-gray-200 rounded-b dark:border-gray-600">
<button data-modal-hide="{{ $model.Name}}-modal" type="button" class="py-2.5 px-5 ms-3 text-sm font-medium text-gray-900 focus:outline-none bg-white rounded-lg border border-gray-200 hover:bg-gray-100 hover:text-blue-700 focus:z-10 focus:ring-4 focus:ring-gray-100 dark:focus:ring-gray-700 dark:bg-gray-800 dark:text-gray-400 dark:border-gray-600 dark:hover:text-white dark:hover:bg-gray-700">Close</button>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
{{ end }}
</div>
</div>
</div>
<script>
var lazyLoadInstance = new LazyLoad({
// Your custom settings go here
});
let cards = document.querySelectorAll('.box')
function liveSearch() {
let search_query = document.getElementById("searchbox").value;
//Use innerText if all contents are visible
//Use textContent for including hidden elements
for (var i = 0; i < cards.length; i++) {
if(cards[i].textContent.toLowerCase()
.includes(search_query.toLowerCase())) {
cards[i].classList.remove("is-hidden");
} else {
cards[i].classList.add("is-hidden");
}
}
}
//A little delay
let typingTimer;
let typeInterval = 500;
let searchInput = document.getElementById('searchbox');
searchInput.addEventListener('keyup', () => {
clearTimeout(typingTimer);
typingTimer = setTimeout(liveSearch, typeInterval);
});
</script>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/flowbite/2.3.0/flowbite.min.js"></script>
</body>
</html>
`
type GalleryModel struct {
Name string `json:"name" yaml:"name"`
URLs []string `json:"urls" yaml:"urls"`
Icon string `json:"icon" yaml:"icon"`
Description string `json:"description" yaml:"description"`
}
func main() {
// read the YAML file which contains the models
f, err := ioutil.ReadFile(os.Args[1])
if err != nil {
fmt.Println("Error reading file:", err)
return
}
models := []*GalleryModel{}
err = yaml.Unmarshal(f, &models)
if err != nil {
// write to stderr
os.Stderr.WriteString("Error unmarshaling YAML: " + err.Error() + "\n")
return
}
// Ensure that all arbitrary text content is sanitized before display
for i, m := range models {
models[i].Name = bluemonday.StrictPolicy().Sanitize(m.Name)
models[i].Description = bluemonday.StrictPolicy().Sanitize(m.Description)
}
// render the template
data := struct {
Models []*GalleryModel
AvailableModels int
}{
Models: models,
AvailableModels: len(models),
}
tmpl := template.Must(template.New("modelPage").Parse(modelPageTemplate))
err = tmpl.Execute(os.Stdout, data)
if err != nil {
fmt.Println("Error executing template:", err)
return
}
}

123
.github/dependabot.yml vendored
View file

@ -1,123 +0,0 @@
# https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file
version: 2
updates:
- package-ecosystem: "gitsubmodule"
directory: "/"
schedule:
interval: "weekly"
- package-ecosystem: "gomod"
directory: "/"
schedule:
interval: "weekly"
ignore:
- dependency-name: "github.com/mudler/LocalAI/pkg/grpc/proto"
- package-ecosystem: "github-actions"
# Workflow files stored in the default location of `.github/workflows`. (You don't need to specify `/.github/workflows` for `directory`. You can use `directory: "/"`.)
directory: "/"
schedule:
# Check for updates to GitHub Actions every weekday
interval: "weekly"
- package-ecosystem: "pip"
# Workflow files stored in the default location of `.github/workflows`. (You don't need to specify `/.github/workflows` for `directory`. You can use `directory: "/"`.)
directory: "/"
schedule:
# Check for updates to GitHub Actions every weekday
interval: "weekly"
- package-ecosystem: "docker"
# Workflow files stored in the default location of `.github/workflows`. (You don't need to specify `/.github/workflows` for `directory`. You can use `directory: "/"`.)
directory: "/"
schedule:
# Check for updates to GitHub Actions every weekday
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/bark"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/common/template"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/coqui"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/diffusers"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/exllama"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/exllama2"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/mamba"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/openvoice"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/parler-tts"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/rerankers"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/sentencetransformers"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/transformers"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/vllm"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/examples/chainlit"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/examples/functions"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/examples/langchain/langchainpy-localai-example"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/examples/langchain-chroma"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/examples/streamlit-bot"
schedule:
interval: "weekly"
- package-ecosystem: "docker"
directory: "/examples/k8sgpt"
schedule:
interval: "weekly"
- package-ecosystem: "docker"
directory: "/examples/kubernetes"
schedule:
interval: "weekly"
- package-ecosystem: "docker"
directory: "/examples/langchain"
schedule:
interval: "weekly"
- package-ecosystem: "gomod"
directory: "/examples/semantic-todo"
schedule:
interval: "weekly"
- package-ecosystem: "docker"
directory: "/examples/telegram-bot"
schedule:
interval: "weekly"

16
.github/labeler.yml vendored
View file

@ -1,15 +1,6 @@
enhancement:
enhancements:
- head-branch: ['^feature', 'feature']
dependencies:
- any:
- changed-files:
- any-glob-to-any-file: 'Makefile'
- changed-files:
- any-glob-to-any-file: '*.mod'
- changed-files:
- any-glob-to-any-file: '*.sum'
kind/documentation:
- any:
- changed-files:
@ -17,11 +8,6 @@ kind/documentation:
- changed-files:
- any-glob-to-any-file: '*.md'
area/ai-model:
- any:
- changed-files:
- any-glob-to-any-file: 'gallery/*'
examples:
- any:
- changed-files:

3
.github/release.yml vendored
View file

@ -13,9 +13,6 @@ changelog:
labels:
- bug
- regression
- title: "🖧 P2P area"
labels:
- area/p2p
- title: Exciting New Features 🎉
labels:
- Semver-Minor

View file

@ -9,17 +9,32 @@ jobs:
fail-fast: false
matrix:
include:
- repository: "ggml-org/llama.cpp"
- repository: "go-skynet/go-llama.cpp"
variable: "GOLLAMA_VERSION"
branch: "master"
- repository: "ggerganov/llama.cpp"
variable: "CPPLLAMA_VERSION"
branch: "master"
- repository: "ggml-org/whisper.cpp"
- repository: "go-skynet/go-ggml-transformers.cpp"
variable: "GOGGMLTRANSFORMERS_VERSION"
branch: "master"
- repository: "donomii/go-rwkv.cpp"
variable: "RWKV_VERSION"
branch: "main"
- repository: "ggerganov/whisper.cpp"
variable: "WHISPER_CPP_VERSION"
branch: "master"
- repository: "PABannier/bark.cpp"
variable: "BARKCPP_VERSION"
- repository: "go-skynet/go-bert.cpp"
variable: "BERT_VERSION"
branch: "master"
- repository: "go-skynet/bloomz.cpp"
variable: "BLOOMZ_VERSION"
branch: "main"
- repository: "leejet/stable-diffusion.cpp"
variable: "STABLEDIFFUSION_GGML_VERSION"
- repository: "nomic-ai/gpt4all"
variable: "GPT4ALL_VERSION"
branch: "main"
- repository: "mudler/go-ggllm.cpp"
variable: "GOGGLLM_VERSION"
branch: "master"
- repository: "mudler/go-stable-diffusion"
variable: "STABLEDIFFUSION_VERSION"
@ -31,30 +46,17 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Bump dependencies 🔧
id: bump
run: |
bash .github/bump_deps.sh ${{ matrix.repository }} ${{ matrix.branch }} ${{ matrix.variable }}
{
echo 'message<<EOF'
cat "${{ matrix.variable }}_message.txt"
echo EOF
} >> "$GITHUB_OUTPUT"
{
echo 'commit<<EOF'
cat "${{ matrix.variable }}_commit.txt"
echo EOF
} >> "$GITHUB_OUTPUT"
rm -rfv ${{ matrix.variable }}_message.txt
rm -rfv ${{ matrix.variable }}_commit.txt
- name: Create Pull Request
uses: peter-evans/create-pull-request@v7
uses: peter-evans/create-pull-request@v5
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI
commit-message: ':arrow_up: Update ${{ matrix.repository }}'
title: 'chore: :arrow_up: Update ${{ matrix.repository }} to `${{ steps.bump.outputs.commit }}`'
title: ':arrow_up: Update ${{ matrix.repository }}'
branch: "update/${{ matrix.variable }}"
body: ${{ steps.bump.outputs.message }}
body: Bump of ${{ matrix.repository }} version
signoff: true

View file

@ -17,12 +17,12 @@ jobs:
run: |
bash .github/bump_docs.sh ${{ matrix.repository }}
- name: Create Pull Request
uses: peter-evans/create-pull-request@v7
uses: peter-evans/create-pull-request@v5
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI
commit-message: ':arrow_up: Update docs version ${{ matrix.repository }}'
title: 'docs: :arrow_up: update docs version ${{ matrix.repository }}'
title: ':arrow_up: Update docs version ${{ matrix.repository }}'
branch: "update/docs"
body: Bump of ${{ matrix.repository }} version inside docs
signoff: true

View file

@ -1,47 +0,0 @@
name: Check if checksums are up-to-date
on:
schedule:
- cron: 0 20 * * *
workflow_dispatch:
jobs:
checksum_check:
runs-on: arc-runner-set
steps:
- name: Force Install GIT latest
run: |
sudo apt-get update \
&& sudo apt-get install -y software-properties-common \
&& sudo apt-get update \
&& sudo add-apt-repository -y ppa:git-core/ppa \
&& sudo apt-get update \
&& sudo apt-get install -y git
- uses: actions/checkout@v4
- name: Install dependencies
run: |
sudo apt-get update
sudo apt-get install -y pip wget
sudo pip install --upgrade pip
pip install huggingface_hub
- name: 'Setup yq'
uses: dcarbone/install-yq-action@v1.3.1
with:
version: 'v4.44.2'
download-compressed: true
force: true
- name: Checksum checker 🔧
run: |
export HF_HOME=/hf_cache
sudo mkdir /hf_cache
sudo chmod 777 /hf_cache
bash .github/checksum_checker.sh gallery/index.yaml
- name: Create Pull Request
uses: peter-evans/create-pull-request@v7
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI
commit-message: ':arrow_up: Checksum updates in gallery/index.yaml'
title: 'chore(model-gallery): :arrow_up: update checksum'
branch: "update/checksum"
body: Updating checksums in gallery/index.yaml
signoff: true

View file

@ -1,43 +0,0 @@
name: Dependabot auto-merge
on:
- pull_request_target
permissions:
contents: write
pull-requests: write
packages: read
jobs:
dependabot:
runs-on: ubuntu-latest
if: ${{ github.actor == 'dependabot[bot]' }}
steps:
- name: Dependabot metadata
id: metadata
uses: dependabot/fetch-metadata@v2.4.0
with:
github-token: "${{ secrets.GITHUB_TOKEN }}"
skip-commit-verification: true
- name: Checkout repository
uses: actions/checkout@v4
- name: Approve a PR if not already approved
run: |
gh pr checkout "$PR_URL"
if [ "$(gh pr status --json reviewDecision -q .currentBranch.reviewDecision)" != "APPROVED" ];
then
gh pr review --approve "$PR_URL"
else
echo "PR already approved.";
fi
env:
PR_URL: ${{github.event.pull_request.html_url}}
GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}}
- name: Enable auto-merge for Dependabot PRs
if: ${{ contains(github.event.pull_request.title, 'bump')}}
run: gh pr merge --auto --squash "$PR_URL"
env:
PR_URL: ${{github.event.pull_request.html_url}}
GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}}

View file

@ -1,64 +0,0 @@
name: Explorer deployment
on:
push:
branches:
- master
tags:
- 'v*'
concurrency:
group: ci-deploy-${{ github.head_ref || github.ref }}-${{ github.repository }}
jobs:
build-linux:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- uses: actions/setup-go@v5
with:
go-version: '1.21.x'
cache: false
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install -y wget curl build-essential ffmpeg protobuf-compiler ccache upx-ucl gawk cmake libgmock-dev
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
make protogen-go
- name: Build api
run: |
CGO_ENABLED=0 make build-api
- name: rm
uses: appleboy/ssh-action@v1.2.2
with:
host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }}
key: ${{ secrets.EXPLORER_SSH_KEY }}
port: ${{ secrets.EXPLORER_SSH_PORT }}
script: |
sudo rm -rf local-ai/ || true
- name: copy file via ssh
uses: appleboy/scp-action@v1.0.0
with:
host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }}
key: ${{ secrets.EXPLORER_SSH_KEY }}
port: ${{ secrets.EXPLORER_SSH_PORT }}
source: "local-ai"
overwrite: true
rm: true
target: ./local-ai
- name: restarting
uses: appleboy/ssh-action@v1.2.2
with:
host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }}
key: ${{ secrets.EXPLORER_SSH_KEY }}
port: ${{ secrets.EXPLORER_SSH_PORT }}
script: |
sudo cp -rfv local-ai/local-ai /usr/bin/local-ai
sudo systemctl restart local-ai

View file

@ -1,83 +0,0 @@
name: Comment PRs
on:
pull_request_target:
jobs:
comment-pr:
env:
MODEL_NAME: hermes-2-theta-llama-3-8b
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v3
with:
ref: "${{ github.event.pull_request.merge_commit_sha }}"
fetch-depth: 0 # needed to checkout all branches for this Action to work
- uses: mudler/localai-github-action@v1
with:
model: 'hermes-2-theta-llama-3-8b' # Any from models.localai.io, or from huggingface.com with: "huggingface://<repository>/file"
# Check the PR diff using the current branch and the base branch of the PR
- uses: GrantBirki/git-diff-action@v2.7.0
id: git-diff-action
with:
json_diff_file_output: diff.json
raw_diff_file_output: diff.txt
file_output_only: "true"
base_branch: ${{ github.event.pull_request.base.sha }}
- name: Show diff
env:
DIFF: ${{ steps.git-diff-action.outputs.raw-diff-path }}
run: |
cat $DIFF
- name: Summarize
env:
DIFF: ${{ steps.git-diff-action.outputs.raw-diff-path }}
id: summarize
run: |
input="$(cat $DIFF)"
# Define the LocalAI API endpoint
API_URL="http://localhost:8080/chat/completions"
# Create a JSON payload using jq to handle special characters
json_payload=$(jq -n --arg input "$input" '{
model: "'$MODEL_NAME'",
messages: [
{
role: "system",
content: "You are LocalAI-bot in Github that helps understanding PRs and assess complexity. Explain what has changed in this PR diff and why"
},
{
role: "user",
content: $input
}
]
}')
# Send the request to LocalAI
response=$(curl -s -X POST $API_URL \
-H "Content-Type: application/json" \
-d "$json_payload")
# Extract the summary from the response
summary="$(echo $response | jq -r '.choices[0].message.content')"
# Print the summary
# -H "Authorization: Bearer $API_KEY" \
echo "Summary:"
echo "$summary"
echo "payload sent"
echo "$json_payload"
{
echo 'message<<EOF'
echo "$summary"
echo EOF
} >> "$GITHUB_OUTPUT"
docker logs --tail 10 local-ai
- uses: mshick/add-pr-comment@v2
if: always()
with:
repo-token: ${{ secrets.UPDATE_BOT_TOKEN }}
message: ${{ steps.summarize.outputs.message }}
message-failure: |
Uh oh! Could not analyze this PR, maybe it's too big?

View file

@ -1,95 +0,0 @@
name: 'generate and publish GRPC docker caches'
on:
workflow_dispatch:
schedule:
# daily at midnight
- cron: '0 0 * * *'
concurrency:
group: grpc-cache-${{ github.head_ref || github.ref }}-${{ github.repository }}
cancel-in-progress: true
jobs:
generate_caches:
strategy:
matrix:
include:
- grpc-base-image: ubuntu:22.04
runs-on: 'arc-runner-set'
platforms: 'linux/amd64,linux/arm64'
runs-on: ${{matrix.runs-on}}
steps:
- name: Release space from worker
if: matrix.runs-on == 'ubuntu-latest'
run: |
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
df -h
echo
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
sudo rm -rf /usr/local/lib/android
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
sudo rm -rf /usr/share/dotnet
sudo apt-get remove -y '^mono-.*' || true
sudo apt-get remove -y '^ghc-.*' || true
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
sudo apt-get remove -y 'php.*' || true
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
sudo apt-get remove -y '^google-.*' || true
sudo apt-get remove -y azure-cli || true
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
sudo apt-get remove -y '^gfortran-.*' || true
sudo apt-get remove -y microsoft-edge-stable || true
sudo apt-get remove -y firefox || true
sudo apt-get remove -y powershell || true
sudo apt-get remove -y r-base-core || true
sudo apt-get autoremove -y
sudo apt-get clean
echo
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
sudo rm -rfv build || true
sudo rm -rf /usr/share/dotnet || true
sudo rm -rf /opt/ghc || true
sudo rm -rf "/usr/local/share/boost" || true
sudo rm -rf "$AGENT_TOOLSDIRECTORY" || true
df -h
- name: Set up QEMU
uses: docker/setup-qemu-action@master
with:
platforms: all
- name: Set up Docker Buildx
id: buildx
uses: docker/setup-buildx-action@master
- name: Checkout
uses: actions/checkout@v4
- name: Cache GRPC
uses: docker/build-push-action@v6
with:
builder: ${{ steps.buildx.outputs.name }}
# The build-args MUST be an EXACT match between the image cache and other workflow steps that want to use that cache.
# This means that even the MAKEFLAGS have to be an EXACT match.
# If the build-args are not an EXACT match, it will result in a cache miss, which will require GRPC to be built from scratch.
build-args: |
GRPC_BASE_IMAGE=${{ matrix.grpc-base-image }}
GRPC_MAKEFLAGS=--jobs=4 --output-sync=target
GRPC_VERSION=v1.65.0
context: .
file: ./Dockerfile
cache-to: type=gha,ignore-error=true
cache-from: type=gha
target: grpc
platforms: ${{ matrix.platforms }}
push: false

View file

@ -1,59 +0,0 @@
name: 'generate and publish intel docker caches'
on:
workflow_dispatch:
push:
branches:
- master
concurrency:
group: intel-cache-${{ github.head_ref || github.ref }}-${{ github.repository }}
cancel-in-progress: true
jobs:
generate_caches:
strategy:
matrix:
include:
- base-image: intel/oneapi-basekit:2025.1.0-0-devel-ubuntu22.04
runs-on: 'ubuntu-latest'
platforms: 'linux/amd64'
runs-on: ${{matrix.runs-on}}
steps:
- name: Set up QEMU
uses: docker/setup-qemu-action@master
with:
platforms: all
- name: Login to DockerHub
if: github.event_name != 'pull_request'
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Login to quay
if: github.event_name != 'pull_request'
uses: docker/login-action@v3
with:
registry: quay.io
username: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
password: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
- name: Set up Docker Buildx
id: buildx
uses: docker/setup-buildx-action@master
- name: Checkout
uses: actions/checkout@v4
- name: Cache Intel images
uses: docker/build-push-action@v6
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |
BASE_IMAGE=${{ matrix.base-image }}
context: .
file: ./Dockerfile
tags: quay.io/go-skynet/intel-oneapi-base:latest
push: true
target: intel
platforms: ${{ matrix.platforms }}

View file

@ -22,7 +22,6 @@ jobs:
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
makeflags: ${{ matrix.makeflags }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
@ -32,23 +31,21 @@ jobs:
strategy:
# Pushing with all jobs in parallel
# eats the bandwidth of all the nodes
max-parallel: ${{ github.event_name != 'pull_request' && 4 || 8 }}
fail-fast: false
max-parallel: ${{ github.event_name != 'pull_request' && 2 || 4 }}
matrix:
include:
# This is basically covered by the AIO test
# - build-type: ''
# platforms: 'linux/amd64'
# tag-latest: 'false'
# tag-suffix: '-ffmpeg'
# ffmpeg: 'true'
# image-type: 'extras'
# runs-on: 'arc-runner-set'
# base-image: "ubuntu:22.04"
# makeflags: "--jobs=3 --output-sync=target"
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
cuda-minor-version: "1"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12-ffmpeg'
@ -63,88 +60,66 @@ jobs:
tag-suffix: '-hipblas'
ffmpeg: 'false'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: 'sycl-f16-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'vulkan'
core-image-build:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
makeflags: ${{ matrix.makeflags }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
matrix:
include:
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-vulkan-ffmpeg-core'
tag-suffix: '-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=4 --output-sync=target"
# core-image-build:
# uses: ./.github/workflows/image_build.yml
# with:
# tag-latest: ${{ matrix.tag-latest }}
# tag-suffix: ${{ matrix.tag-suffix }}
# ffmpeg: ${{ matrix.ffmpeg }}
# image-type: ${{ matrix.image-type }}
# build-type: ${{ matrix.build-type }}
# cuda-major-version: ${{ matrix.cuda-major-version }}
# cuda-minor-version: ${{ matrix.cuda-minor-version }}
# platforms: ${{ matrix.platforms }}
# runs-on: ${{ matrix.runs-on }}
# base-image: ${{ matrix.base-image }}
# grpc-base-image: ${{ matrix.grpc-base-image }}
# makeflags: ${{ matrix.makeflags }}
# secrets:
# dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
# dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
# quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
# quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
# strategy:
# matrix:
# include:
# - build-type: ''
# platforms: 'linux/amd64'
# tag-latest: 'false'
# tag-suffix: '-ffmpeg-core'
# ffmpeg: 'true'
# image-type: 'core'
# runs-on: 'ubuntu-latest'
# base-image: "ubuntu:22.04"
# makeflags: "--jobs=4 --output-sync=target"
# - build-type: 'sycl_f16'
# platforms: 'linux/amd64'
# tag-latest: 'false'
# base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
# grpc-base-image: "ubuntu:22.04"
# tag-suffix: 'sycl-f16-ffmpeg-core'
# ffmpeg: 'true'
# image-type: 'core'
# runs-on: 'arc-runner-set'
# makeflags: "--jobs=3 --output-sync=target"
# - build-type: 'cublas'
# cuda-major-version: "12"
# cuda-minor-version: "0"
# platforms: 'linux/amd64'
# tag-latest: 'false'
# tag-suffix: '-cublas-cuda12-ffmpeg-core'
# ffmpeg: 'true'
# image-type: 'core'
# runs-on: 'ubuntu-latest'
# base-image: "ubuntu:22.04"
# makeflags: "--jobs=4 --output-sync=target"
# - build-type: 'vulkan'
# platforms: 'linux/amd64'
# tag-latest: 'false'
# tag-suffix: '-vulkan-ffmpeg-core'
# ffmpeg: 'true'
# image-type: 'core'
# runs-on: 'ubuntu-latest'
# base-image: "ubuntu:22.04"
# makeflags: "--jobs=4 --output-sync=target"
makeflags: "--jobs=5 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: 'sycl-f16-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=5 --output-sync=target"

View file

@ -13,59 +13,6 @@ concurrency:
cancel-in-progress: true
jobs:
hipblas-jobs:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
aio: ${{ matrix.aio }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
# Pushing with all jobs in parallel
# eats the bandwidth of all the nodes
max-parallel: 2
matrix:
include:
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-hipblas-extras'
ffmpeg: 'true'
image-type: 'extras'
aio: "-aio-gpu-hipblas"
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
latest-image: 'latest-gpu-hipblas-extras'
latest-image-aio: 'latest-aio-gpu-hipblas'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas'
ffmpeg: 'true'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
latest-image: 'latest-gpu-hipblas'
self-hosted-jobs:
uses: ./.github/workflows/image_build.yml
with:
@ -79,7 +26,6 @@ jobs:
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
aio: ${{ matrix.aio }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
@ -92,86 +38,189 @@ jobs:
strategy:
# Pushing with all jobs in parallel
# eats the bandwidth of all the nodes
max-parallel: ${{ github.event_name != 'pull_request' && 5 || 8 }}
max-parallel: ${{ github.event_name != 'pull_request' && 2 || 4 }}
matrix:
include:
# Extra images
- build-type: ''
#platforms: 'linux/amd64,linux/arm64'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: ''
ffmpeg: ''
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda11-extras'
tag-suffix: '-cublas-cuda11'
ffmpeg: ''
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12'
ffmpeg: ''
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-cublas-cuda11-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
aio: "-aio-gpu-nvidia-cuda-11"
latest-image: 'latest-gpu-nvidia-cuda-11-extras'
latest-image: 'latest-gpu-nvidia-cuda-11'
latest-image-aio: 'latest-aio-gpu-nvidia-cuda-11'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
cuda-minor-version: "1"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12-extras'
tag-latest: 'auto'
tag-suffix: '-cublas-cuda12-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
aio: "-aio-gpu-nvidia-cuda-12"
latest-image: 'latest-gpu-nvidia-cuda-12-extras'
latest-image: 'latest-gpu-nvidia-cuda-12'
latest-image-aio: 'latest-aio-gpu-nvidia-cuda-12'
makeflags: "--jobs=3 --output-sync=target"
- build-type: ''
#platforms: 'linux/amd64,linux/arm64'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: ''
ffmpeg: ''
image-type: 'extras'
base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-hipblas-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
aio: "-aio-gpu-hipblas"
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
latest-image: 'latest-gpu-hipblas'
latest-image-aio: 'latest-aio-gpu-hipblas'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas'
ffmpeg: 'false'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f16-extras'
tag-latest: 'auto'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f16-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
aio: "-aio-gpu-intel-f16"
latest-image: 'latest-gpu-intel-f16-extras'
latest-image: 'latest-gpu-intel-f16'
latest-image-aio: 'latest-aio-gpu-intel-f16'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f32-extras'
tag-latest: 'auto'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f32-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
aio: "-aio-gpu-intel-f32"
latest-image: 'latest-gpu-intel-f32-extras'
latest-image: 'latest-gpu-intel-f32'
latest-image-aio: 'latest-aio-gpu-intel-f32'
makeflags: "--jobs=3 --output-sync=target"
# Core images
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f16'
ffmpeg: 'true'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f16-core'
ffmpeg: 'false'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
latest-image: 'latest-gpu-intel-f16'
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: '-sycl-f32'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f32-core'
ffmpeg: 'false'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f16-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
latest-image: 'latest-gpu-intel-f32'
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f32-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-core'
ffmpeg: 'false'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
core-image-build:
uses: ./.github/workflows/image_build.yml
@ -187,107 +236,70 @@ jobs:
runs-on: ${{ matrix.runs-on }}
aio: ${{ matrix.aio }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
skip-drivers: ${{ matrix.skip-drivers }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
max-parallel: ${{ github.event_name != 'pull_request' && 2 || 4 }}
matrix:
include:
- build-type: ''
platforms: 'linux/amd64,linux/arm64'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: ''
tag-suffix: '-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
runs-on: 'ubuntu-latest'
aio: "-aio-cpu"
latest-image: 'latest-cpu'
latest-image-aio: 'latest-aio-cpu'
makeflags: "--jobs=4 --output-sync=target"
skip-drivers: 'false'
makeflags: "--jobs=5 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda11'
ffmpeg: 'true'
tag-suffix: '-cublas-cuda11-core'
ffmpeg: ''
image-type: 'core'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=4 --output-sync=target"
skip-drivers: 'false'
latest-image: 'latest-gpu-nvidia-cuda-12'
runs-on: 'ubuntu-latest'
makeflags: "--jobs=5 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
cuda-minor-version: "1"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12'
ffmpeg: 'true'
tag-suffix: '-cublas-cuda12-core'
ffmpeg: ''
image-type: 'core'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
skip-drivers: 'false'
makeflags: "--jobs=4 --output-sync=target"
latest-image: 'latest-gpu-nvidia-cuda-12'
- build-type: 'vulkan'
runs-on: 'ubuntu-latest'
makeflags: "--jobs=5 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-vulkan'
tag-suffix: '-cublas-cuda11-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
skip-drivers: 'false'
makeflags: "--jobs=4 --output-sync=target"
latest-image: 'latest-gpu-vulkan'
gh-runner:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
aio: ${{ matrix.aio }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
skip-drivers: ${{ matrix.skip-drivers }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
matrix:
include:
makeflags: "--jobs=5 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/arm64'
cuda-minor-version: "1"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-nvidia-l4t-arm64'
latest-image: 'latest-nvidia-l4t-arm64'
tag-suffix: '-cublas-cuda12-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
runs-on: 'ubuntu-24.04-arm'
makeflags: "--jobs=4 --output-sync=target"
skip-drivers: 'true'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=5 --output-sync=target"

View file

@ -6,10 +6,6 @@ on:
inputs:
base-image:
description: 'Base image'
required: true
type: string
grpc-base-image:
description: 'GRPC Base image, must be a compatible image with base-image'
required: false
default: ''
type: string
@ -19,11 +15,11 @@ on:
type: string
cuda-major-version:
description: 'CUDA major version'
default: "12"
default: "11"
type: string
cuda-minor-version:
description: 'CUDA minor version'
default: "4"
default: "7"
type: string
platforms:
description: 'Platforms'
@ -49,10 +45,6 @@ on:
description: 'FFMPEG'
default: ''
type: string
skip-drivers:
description: 'Skip drivers by default'
default: 'false'
type: string
image-type:
description: 'Image type'
default: ''
@ -65,7 +57,7 @@ on:
makeflags:
description: 'Make Flags'
required: false
default: '--jobs=4 --output-sync=target'
default: '--jobs=3 --output-sync=target'
type: string
aio:
description: 'AIO Image Name'
@ -140,7 +132,6 @@ jobs:
- name: Docker meta
id: meta
if: github.event_name != 'pull_request'
uses: docker/metadata-action@v5
with:
images: |
@ -153,20 +144,7 @@ jobs:
flavor: |
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.tag-suffix }}
- name: Docker meta for PR
id: meta_pull_request
if: github.event_name == 'pull_request'
uses: docker/metadata-action@v5
with:
images: |
ttl.sh/localai-ci-pr-${{ github.event.number }}
tags: |
type=ref,event=branch
type=semver,pattern={{raw}}
type=sha
flavor: |
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.tag-suffix }}
- name: Docker meta AIO (quay.io)
if: inputs.aio != ''
id: meta_aio
@ -192,6 +170,7 @@ jobs:
type=ref,event=branch
type=semver,pattern={{raw}}
flavor: |
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.aio }}
- name: Set up QEMU
@ -218,15 +197,29 @@ jobs:
username: ${{ secrets.quayUsername }}
password: ${{ secrets.quayPassword }}
- name: Build and push
uses: docker/build-push-action@v6
if: github.event_name != 'pull_request'
- name: Cache GRPC
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |
IMAGE_TYPE=${{ inputs.image-type }}
BASE_IMAGE=${{ inputs.base-image }}
MAKEFLAGS=${{ inputs.makeflags }}
GRPC_VERSION=v1.58.0
context: .
file: ./Dockerfile
cache-from: type=gha
cache-to: type=gha,ignore-error=true
target: grpc
platforms: ${{ inputs.platforms }}
push: false
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
- name: Build and push
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
# The build-args MUST be an EXACT match between the image cache and other workflow steps that want to use that cache.
# This means that even the MAKEFLAGS have to be an EXACT match.
# If the build-args are not an EXACT match, it will result in a cache miss, which will require GRPC to be built from scratch.
# This is why some build args like GRPC_VERSION and MAKEFLAGS are hardcoded
build-args: |
BUILD_TYPE=${{ inputs.build-type }}
CUDA_MAJOR_VERSION=${{ inputs.cuda-major-version }}
@ -234,11 +227,7 @@ jobs:
FFMPEG=${{ inputs.ffmpeg }}
IMAGE_TYPE=${{ inputs.image-type }}
BASE_IMAGE=${{ inputs.base-image }}
GRPC_BASE_IMAGE=${{ inputs.grpc-base-image || inputs.base-image }}
GRPC_MAKEFLAGS=--jobs=4 --output-sync=target
GRPC_VERSION=v1.65.0
MAKEFLAGS=${{ inputs.makeflags }}
SKIP_DRIVERS=${{ inputs.skip-drivers }}
context: .
file: ./Dockerfile
cache-from: type=gha
@ -246,43 +235,18 @@ jobs:
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
### Start testing image
- name: Build and push
uses: docker/build-push-action@v6
if: github.event_name == 'pull_request'
with:
builder: ${{ steps.buildx.outputs.name }}
# The build-args MUST be an EXACT match between the image cache and other workflow steps that want to use that cache.
# This means that even the MAKEFLAGS have to be an EXACT match.
# If the build-args are not an EXACT match, it will result in a cache miss, which will require GRPC to be built from scratch.
# This is why some build args like GRPC_VERSION and MAKEFLAGS are hardcoded
build-args: |
BUILD_TYPE=${{ inputs.build-type }}
CUDA_MAJOR_VERSION=${{ inputs.cuda-major-version }}
CUDA_MINOR_VERSION=${{ inputs.cuda-minor-version }}
FFMPEG=${{ inputs.ffmpeg }}
IMAGE_TYPE=${{ inputs.image-type }}
BASE_IMAGE=${{ inputs.base-image }}
GRPC_BASE_IMAGE=${{ inputs.grpc-base-image || inputs.base-image }}
GRPC_MAKEFLAGS=--jobs=4 --output-sync=target
GRPC_VERSION=v1.65.0
MAKEFLAGS=${{ inputs.makeflags }}
SKIP_DRIVERS=${{ inputs.skip-drivers }}
context: .
file: ./Dockerfile
cache-from: type=gha
platforms: ${{ inputs.platforms }}
push: true
tags: ${{ steps.meta_pull_request.outputs.tags }}
labels: ${{ steps.meta_pull_request.outputs.labels }}
- name: Testing image
if: github.event_name == 'pull_request'
- name: Inspect image
if: github.event_name != 'pull_request'
run: |
echo "Image is available at ttl.sh/localai-ci-pr-${{ github.event.number }}:${{ steps.meta_pull_request.outputs.version }}" >> $GITHUB_STEP_SUMMARY
## End testing image
docker pull localai/localai:${{ steps.meta.outputs.version }}
docker image inspect localai/localai:${{ steps.meta.outputs.version }}
docker pull quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
docker image inspect quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
- name: Build and push AIO image
if: inputs.aio != ''
uses: docker/build-push-action@v6
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |
@ -297,7 +261,7 @@ jobs:
- name: Build and push AIO image (dockerhub)
if: inputs.aio != ''
uses: docker/build-push-action@v6
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |
@ -310,18 +274,12 @@ jobs:
tags: ${{ steps.meta_aio_dockerhub.outputs.tags }}
labels: ${{ steps.meta_aio_dockerhub.outputs.labels }}
- name: Cleanup
run: |
docker builder prune -f
docker system prune --force --volumes --all
- name: Latest tag
# run this on branches, when it is a tag and there is a latest-image defined
if: github.event_name != 'pull_request' && inputs.latest-image != '' && github.ref_type == 'tag'
run: |
docker pull localai/localai:${{ steps.meta.outputs.version }}
docker tag localai/localai:${{ steps.meta.outputs.version }} localai/localai:${{ inputs.latest-image }}
docker push localai/localai:${{ inputs.latest-image }}
docker pull quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
docker tag quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }} quay.io/go-skynet/local-ai:${{ inputs.latest-image }}
docker push quay.io/go-skynet/local-ai:${{ inputs.latest-image }}
@ -331,7 +289,6 @@ jobs:
run: |
docker pull localai/localai:${{ steps.meta_aio_dockerhub.outputs.version }}
docker tag localai/localai:${{ steps.meta_aio_dockerhub.outputs.version }} localai/localai:${{ inputs.latest-image-aio }}
docker push localai/localai:${{ inputs.latest-image-aio }}
docker pull quay.io/go-skynet/local-ai:${{ steps.meta_aio.outputs.version }}
docker tag quay.io/go-skynet/local-ai:${{ steps.meta_aio.outputs.version }} quay.io/go-skynet/local-ai:${{ inputs.latest-image-aio }}
docker push quay.io/go-skynet/local-ai:${{ inputs.latest-image-aio }}

View file

@ -1,35 +0,0 @@
name: LocalAI-bot auto-merge
on:
- pull_request_target
permissions:
contents: write
pull-requests: write
packages: read
jobs:
dependabot:
runs-on: ubuntu-latest
if: ${{ github.actor == 'localai-bot' }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Approve a PR if not already approved
run: |
gh pr checkout "$PR_URL"
if [ "$(gh pr status --json reviewDecision -q .currentBranch.reviewDecision)" != "APPROVED" ];
then
gh pr review --approve "$PR_URL"
else
echo "PR already approved.";
fi
env:
PR_URL: ${{github.event.pull_request.html_url}}
GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}}
- name: Enable auto-merge for LocalAIBot PRs
run: gh pr merge --auto --squash "$PR_URL"
env:
PR_URL: ${{github.event.pull_request.html_url}}
GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}}

View file

@ -1,168 +0,0 @@
name: Notifications for new models
on:
pull_request:
types:
- closed
jobs:
notify-discord:
if: ${{ (github.event.pull_request.merged == true) && (contains(github.event.pull_request.labels.*.name, 'area/ai-model')) }}
env:
MODEL_NAME: gemma-3-12b-it
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0 # needed to checkout all branches for this Action to work
- uses: mudler/localai-github-action@v1
with:
model: 'gemma-3-12b-it' # Any from models.localai.io, or from huggingface.com with: "huggingface://<repository>/file"
# Check the PR diff using the current branch and the base branch of the PR
- uses: GrantBirki/git-diff-action@v2.8.0
id: git-diff-action
with:
json_diff_file_output: diff.json
raw_diff_file_output: diff.txt
file_output_only: "true"
- name: Summarize
env:
DIFF: ${{ steps.git-diff-action.outputs.raw-diff-path }}
id: summarize
run: |
input="$(cat $DIFF)"
# Define the LocalAI API endpoint
API_URL="http://localhost:8080/chat/completions"
# Create a JSON payload using jq to handle special characters
json_payload=$(jq -n --arg input "$input" '{
model: "'$MODEL_NAME'",
messages: [
{
role: "system",
content: "You are LocalAI-bot. Write a discord message to notify everyone about the new model from the git diff. Make it informal. An example can include: the URL of the model, the name, and a brief description of the model if exists. Also add an hint on how to install it in LocalAI and that can be browsed over https://models.localai.io. For example: local-ai run model_name_here"
},
{
role: "user",
content: $input
}
]
}')
# Send the request to LocalAI
response=$(curl -s -X POST $API_URL \
-H "Content-Type: application/json" \
-d "$json_payload")
# Extract the summary from the response
summary="$(echo $response | jq -r '.choices[0].message.content')"
# Print the summary
# -H "Authorization: Bearer $API_KEY" \
echo "Summary:"
echo "$summary"
echo "payload sent"
echo "$json_payload"
{
echo 'message<<EOF'
echo "$summary"
echo EOF
} >> "$GITHUB_OUTPUT"
docker logs --tail 10 local-ai
- name: Discord notification
env:
DISCORD_WEBHOOK: ${{ secrets.DISCORD_WEBHOOK_URL }}
DISCORD_USERNAME: "LocalAI-Bot"
DISCORD_AVATAR: "https://avatars.githubusercontent.com/u/139863280?v=4"
uses: Ilshidur/action-discord@master
with:
args: ${{ steps.summarize.outputs.message }}
- name: Setup tmate session if fails
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true
notify-twitter:
if: ${{ (github.event.pull_request.merged == true) && (contains(github.event.pull_request.labels.*.name, 'area/ai-model')) }}
env:
MODEL_NAME: gemma-3-12b-it
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0 # needed to checkout all branches for this Action to work
- name: Start LocalAI
run: |
echo "Starting LocalAI..."
docker run -e -ti -d --name local-ai -p 8080:8080 localai/localai:master-ffmpeg-core run --debug $MODEL_NAME
until [ "`docker inspect -f {{.State.Health.Status}} local-ai`" == "healthy" ]; do echo "Waiting for container to be ready"; docker logs --tail 10 local-ai; sleep 2; done
# Check the PR diff using the current branch and the base branch of the PR
- uses: GrantBirki/git-diff-action@v2.8.0
id: git-diff-action
with:
json_diff_file_output: diff.json
raw_diff_file_output: diff.txt
file_output_only: "true"
- name: Summarize
env:
DIFF: ${{ steps.git-diff-action.outputs.raw-diff-path }}
id: summarize
run: |
input="$(cat $DIFF)"
# Define the LocalAI API endpoint
API_URL="http://localhost:8080/chat/completions"
# Create a JSON payload using jq to handle special characters
json_payload=$(jq -n --arg input "$input" '{
model: "'$MODEL_NAME'",
messages: [
{
role: "system",
content: "You are LocalAI-bot. Write a twitter message to notify everyone about the new model from the git diff. Make it informal and really short. An example can include: the name, and a brief description of the model if exists. Also add an hint on how to install it in LocalAI. For example: local-ai run model_name_here"
},
{
role: "user",
content: $input
}
]
}')
# Send the request to LocalAI
response=$(curl -s -X POST $API_URL \
-H "Content-Type: application/json" \
-d "$json_payload")
# Extract the summary from the response
summary="$(echo $response | jq -r '.choices[0].message.content')"
# Print the summary
# -H "Authorization: Bearer $API_KEY" \
echo "Summary:"
echo "$summary"
echo "payload sent"
echo "$json_payload"
{
echo 'message<<EOF'
echo "$summary"
echo EOF
} >> "$GITHUB_OUTPUT"
docker logs --tail 10 local-ai
- uses: Eomm/why-don-t-you-tweet@v2
with:
tweet-message: ${{ steps.summarize.outputs.message }}
env:
# Get your tokens from https://developer.twitter.com/apps
TWITTER_CONSUMER_API_KEY: ${{ secrets.TWITTER_APP_KEY }}
TWITTER_CONSUMER_API_SECRET: ${{ secrets.TWITTER_APP_SECRET }}
TWITTER_ACCESS_TOKEN: ${{ secrets.TWITTER_ACCESS_TOKEN }}
TWITTER_ACCESS_TOKEN_SECRET: ${{ secrets.TWITTER_ACCESS_TOKEN_SECRET }}
- name: Setup tmate session if fails
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true

View file

@ -1,63 +0,0 @@
name: Release notifications
on:
release:
types:
- published
jobs:
notify-discord:
runs-on: ubuntu-latest
env:
RELEASE_BODY: ${{ github.event.release.body }}
RELEASE_TITLE: ${{ github.event.release.name }}
RELEASE_TAG_NAME: ${{ github.event.release.tag_name }}
steps:
- uses: mudler/localai-github-action@v1
with:
model: 'gemma-3-12b-it' # Any from models.localai.io, or from huggingface.com with: "huggingface://<repository>/file"
- name: Summarize
id: summarize
run: |
input="$RELEASE_TITLE\b$RELEASE_BODY"
# Define the LocalAI API endpoint
API_URL="http://localhost:8080/chat/completions"
# Create a JSON payload using jq to handle special characters
json_payload=$(jq -n --arg input "$input" '{
model: "'$MODEL_NAME'",
messages: [
{
role: "system",
content: "Write a discord message with a bullet point summary of the release notes."
},
{
role: "user",
content: $input
}
]
}')
# Send the request to LocalAI API
response=$(curl -s -X POST $API_URL \
-H "Content-Type: application/json" \
-d "$json_payload")
# Extract the summary from the response
summary=$(echo $response | jq -r '.choices[0].message.content')
# Print the summary
# -H "Authorization: Bearer $API_KEY" \
{
echo 'message<<EOF'
echo "$summary"
echo EOF
} >> "$GITHUB_OUTPUT"
- name: Discord notification
env:
DISCORD_WEBHOOK: ${{ secrets.DISCORD_WEBHOOK_URL_RELEASE }}
DISCORD_USERNAME: "LocalAI-Bot"
DISCORD_AVATAR: "https://avatars.githubusercontent.com/u/139863280?v=4"
uses: Ilshidur/action-discord@master
with:
args: ${{ steps.summarize.outputs.message }}

View file

@ -1,28 +0,0 @@
name: Check PR style
on:
pull_request_target:
types:
- opened
- reopened
- edited
- synchronize
jobs:
title-lint:
runs-on: ubuntu-latest
permissions:
statuses: write
steps:
- uses: aslafy-z/conventional-pr-title-action@v3
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# check-pr-description:
# runs-on: ubuntu-latest
# steps:
# - uses: actions/checkout@v2
# - uses: jadrol/pr-description-checker-action@v1.0.0
# id: description-checker
# with:
# repo-token: ${{ secrets.GITHUB_TOKEN }}
# exempt-labels: no qa

View file

@ -1,15 +1,9 @@
name: Build and Release
on:
push:
branches:
- master
tags:
- 'v*'
pull_request:
on: push
env:
GRPC_VERSION: v1.65.0
GRPC_VERSION: v1.58.0
permissions:
contents: write
@ -19,182 +13,49 @@ concurrency:
cancel-in-progress: true
jobs:
build-linux-arm:
build-linux:
strategy:
matrix:
include:
- build: 'avx2'
defines: ''
- build: 'avx'
defines: '-DLLAMA_AVX2=OFF'
- build: 'avx512'
defines: '-DLLAMA_AVX512=ON'
- build: 'cuda12'
defines: ''
- build: 'cuda11'
defines: ''
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- uses: actions/setup-go@v5
- uses: actions/setup-go@v4
with:
go-version: '1.21.x'
cache: false
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg protobuf-compiler ccache upx-ucl gawk
sudo apt-get install -qy binutils-aarch64-linux-gnu gcc-aarch64-linux-gnu g++-aarch64-linux-gnu libgmock-dev
make install-go-tools
- name: Install CUDA Dependencies
run: |
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/cross-linux-aarch64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get install -y cuda-cross-aarch64 cuda-nvcc-cross-aarch64-${CUDA_VERSION} libcublas-cross-aarch64-${CUDA_VERSION}
env:
CUDA_VERSION: 12-4
- name: Cache grpc
id: cache-grpc
uses: actions/cache@v4
with:
path: grpc
key: ${{ runner.os }}-arm-grpc-${{ env.GRPC_VERSION }}
- name: Build grpc
if: steps.cache-grpc.outputs.cache-hit != 'true'
run: |
git clone --recurse-submodules -b ${{ env.GRPC_VERSION }} --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && sed -i "216i\ TESTONLY" "third_party/abseil-cpp/absl/container/CMakeLists.txt" && mkdir -p cmake/build && \
cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make --jobs 5 --output-sync=target
- name: Install gRPC
run: |
GNU_HOST=aarch64-linux-gnu
C_COMPILER_ARM_LINUX=$GNU_HOST-gcc
CXX_COMPILER_ARM_LINUX=$GNU_HOST-g++
CROSS_TOOLCHAIN=/usr/$GNU_HOST
CROSS_STAGING_PREFIX=$CROSS_TOOLCHAIN/stage
CMAKE_CROSS_TOOLCHAIN=/tmp/arm.toolchain.cmake
# https://cmake.org/cmake/help/v3.13/manual/cmake-toolchains.7.html#cross-compiling-for-linux
echo "set(CMAKE_SYSTEM_NAME Linux)" >> $CMAKE_CROSS_TOOLCHAIN && \
echo "set(CMAKE_SYSTEM_PROCESSOR arm)" >> $CMAKE_CROSS_TOOLCHAIN && \
echo "set(CMAKE_STAGING_PREFIX $CROSS_STAGING_PREFIX)" >> $CMAKE_CROSS_TOOLCHAIN && \
echo "set(CMAKE_SYSROOT ${CROSS_TOOLCHAIN}/sysroot)" >> $CMAKE_CROSS_TOOLCHAIN && \
echo "set(CMAKE_C_COMPILER /usr/bin/$C_COMPILER_ARM_LINUX)" >> $CMAKE_CROSS_TOOLCHAIN && \
echo "set(CMAKE_CXX_COMPILER /usr/bin/$CXX_COMPILER_ARM_LINUX)" >> $CMAKE_CROSS_TOOLCHAIN && \
echo "set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)" >> $CMAKE_CROSS_TOOLCHAIN && \
echo "set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)" >> $CMAKE_CROSS_TOOLCHAIN && \
echo "set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)" >> $CMAKE_CROSS_TOOLCHAIN && \
echo "set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)" >> $CMAKE_CROSS_TOOLCHAIN
GRPC_DIR=$PWD/grpc
cd grpc && cd cmake/build && sudo make --jobs 5 --output-sync=target install && \
GRPC_CROSS_BUILD_DIR=$GRPC_DIR/cmake/cross_build && \
mkdir -p $GRPC_CROSS_BUILD_DIR && \
cd $GRPC_CROSS_BUILD_DIR && \
cmake -DCMAKE_TOOLCHAIN_FILE=$CMAKE_CROSS_TOOLCHAIN \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=$CROSS_TOOLCHAIN/grpc_install \
../.. && \
sudo make -j`nproc` install
- name: Build
id: build
run: |
GNU_HOST=aarch64-linux-gnu
C_COMPILER_ARM_LINUX=$GNU_HOST-gcc
CXX_COMPILER_ARM_LINUX=$GNU_HOST-g++
CROSS_TOOLCHAIN=/usr/$GNU_HOST
CROSS_STAGING_PREFIX=$CROSS_TOOLCHAIN/stage
CMAKE_CROSS_TOOLCHAIN=/tmp/arm.toolchain.cmake
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
export PATH=$PATH:$GOPATH/bin
export PATH=/usr/local/cuda/bin:$PATH
sudo rm -rf /usr/aarch64-linux-gnu/lib/libstdc++.so.6
sudo cp -rf /usr/aarch64-linux-gnu/lib/libstdc++.so* /usr/aarch64-linux-gnu/lib/libstdc++.so.6
sudo cp /usr/aarch64-linux-gnu/lib/ld-linux-aarch64.so.1 ld.so
BACKEND_LIBS="./grpc/cmake/cross_build/third_party/re2/libre2.a ./grpc/cmake/cross_build/libgrpc.a ./grpc/cmake/cross_build/libgrpc++.a ./grpc/cmake/cross_build/third_party/protobuf/libprotobuf.a /usr/aarch64-linux-gnu/lib/libc.so.6 /usr/aarch64-linux-gnu/lib/libstdc++.so.6 /usr/aarch64-linux-gnu/lib/libgomp.so.1 /usr/aarch64-linux-gnu/lib/libm.so.6 /usr/aarch64-linux-gnu/lib/libgcc_s.so.1 /usr/aarch64-linux-gnu/lib/libdl.so.2 /usr/aarch64-linux-gnu/lib/libpthread.so.0 ./ld.so" \
GOOS=linux \
GOARCH=arm64 \
CMAKE_ARGS="-DProtobuf_INCLUDE_DIRS=$CROSS_STAGING_PREFIX/include -DProtobuf_DIR=$CROSS_STAGING_PREFIX/lib/cmake/protobuf -DgRPC_DIR=$CROSS_STAGING_PREFIX/lib/cmake/grpc -DCMAKE_TOOLCHAIN_FILE=$CMAKE_CROSS_TOOLCHAIN -DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc -DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++" make dist-cross-linux-arm64
- uses: actions/upload-artifact@v4
with:
name: LocalAI-linux-arm64
path: release/
- name: Release
uses: softprops/action-gh-release@v2
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true
build-linux:
runs-on: arc-runner-set
steps:
- name: Force Install GIT latest
run: |
sudo apt-get update \
&& sudo apt-get install -y software-properties-common \
&& sudo apt-get update \
&& sudo add-apt-repository -y ppa:git-core/ppa \
&& sudo apt-get update \
&& sudo apt-get install -y git
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- uses: actions/setup-go@v5
with:
go-version: '1.21.x'
cache: false
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install -y wget curl build-essential ffmpeg protobuf-compiler ccache upx-ucl gawk cmake libgmock-dev
make install-go-tools
- name: Intel Dependencies
run: |
wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | sudo tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null
echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | sudo tee /etc/apt/sources.list.d/oneAPI.list
sudo apt update
sudo apt install -y intel-basekit
sudo apt-get install build-essential ffmpeg
- name: Install CUDA Dependencies
if: ${{ matrix.build == 'cuda12' || matrix.build == 'cuda11' }}
run: |
if [ "${{ matrix.build }}" == "cuda12" ]; then
export CUDA_VERSION=12-3
else
export CUDA_VERSION=11-7
fi
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get install -y cuda-nvcc-${CUDA_VERSION} libcublas-dev-${CUDA_VERSION}
env:
CUDA_VERSION: 12-5
- name: "Install Hipblas"
env:
ROCM_VERSION: "6.1"
AMDGPU_VERSION: "6.1"
run: |
set -ex
sudo apt-get update
sudo DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends ca-certificates curl libnuma-dev gnupg
curl -sL https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -
printf "deb [arch=amd64] https://repo.radeon.com/rocm/apt/$ROCM_VERSION/ jammy main" | sudo tee /etc/apt/sources.list.d/rocm.list
printf "deb [arch=amd64] https://repo.radeon.com/amdgpu/$AMDGPU_VERSION/ubuntu jammy main" | sudo tee /etc/apt/sources.list.d/amdgpu.list
printf 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt-get update
sudo DEBIAN_FRONTEND=noninteractive apt-get install -y \
hipblas-dev rocm-dev \
rocblas-dev
sudo apt-get clean
sudo rm -rf /var/lib/apt/lists/*
sudo ldconfig
- name: Cache grpc
id: cache-grpc
uses: actions/cache@v4
uses: actions/cache@v3
with:
path: grpc
key: ${{ runner.os }}-grpc-${{ env.GRPC_VERSION }}
@ -202,123 +63,104 @@ jobs:
if: steps.cache-grpc.outputs.cache-hit != 'true'
run: |
git clone --recurse-submodules -b ${{ env.GRPC_VERSION }} --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && sed -i "216i\ TESTONLY" "third_party/abseil-cpp/absl/container/CMakeLists.txt" && mkdir -p cmake/build && \
cd cmake/build && cmake -DgRPC_INSTALL=ON \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make --jobs 5 --output-sync=target
- name: Install gRPC
run: |
cd grpc && cd cmake/build && sudo make --jobs 5 --output-sync=target install
# BACKEND_LIBS needed for gpu-workload: /opt/intel/oneapi/*/lib/libiomp5.so /opt/intel/oneapi/*/lib/libmkl_core.so /opt/intel/oneapi/*/lib/libmkl_core.so.2 /opt/intel/oneapi/*/lib/libmkl_intel_ilp64.so /opt/intel/oneapi/*/lib/libmkl_intel_ilp64.so.2 /opt/intel/oneapi/*/lib/libmkl_sycl_blas.so /opt/intel/oneapi/*/lib/libmkl_sycl_blas.so.4 /opt/intel/oneapi/*/lib/libmkl_tbb_thread.so /opt/intel/oneapi/*/lib/libmkl_tbb_thread.so.2 /opt/intel/oneapi/*/lib/libsycl.so /opt/intel/oneapi/*/lib/libsycl.so.7 /opt/intel/oneapi/*/lib/libsycl.so.7.1.0 /opt/rocm-*/lib/libamdhip64.so /opt/rocm-*/lib/libamdhip64.so.5 /opt/rocm-*/lib/libamdhip64.so.6 /opt/rocm-*/lib/libamdhip64.so.6.1.60100 /opt/rocm-*/lib/libhipblas.so /opt/rocm-*/lib/libhipblas.so.2 /opt/rocm-*/lib/libhipblas.so.2.1.60100 /opt/rocm-*/lib/librocblas.so /opt/rocm-*/lib/librocblas.so.4 /opt/rocm-*/lib/librocblas.so.4.1.60100 /usr/lib/x86_64-linux-gnu/libstdc++.so.6 /usr/lib/x86_64-linux-gnu/libOpenCL.so.1 /usr/lib/x86_64-linux-gnu/libOpenCL.so.1.0.0 /usr/lib/x86_64-linux-gnu/libm.so.6 /usr/lib/x86_64-linux-gnu/libgcc_s.so.1 /usr/lib/x86_64-linux-gnu/libc.so.6 /usr/lib/x86_64-linux-gnu/librt.so.1 /usr/local/cuda-*/targets/x86_64-linux/lib/libcublas.so /usr/local/cuda-*/targets/x86_64-linux/lib/libcublasLt.so /usr/local/cuda-*/targets/x86_64-linux/lib/libcudart.so /usr/local/cuda-*/targets/x86_64-linux/lib/stubs/libcuda.so
- name: Build
id: build
env:
CMAKE_ARGS: "${{ matrix.defines }}"
BUILD_ID: "${{ matrix.build }}"
run: |
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
export PATH=$PATH:$GOPATH/bin
if [ "${{ matrix.build }}" == "cuda12" ] || [ "${{ matrix.build }}" == "cuda11" ]; then
export BUILD_TYPE=cublas
export PATH=/usr/local/cuda/bin:$PATH
export PATH=/opt/rocm/bin:$PATH
source /opt/intel/oneapi/setvars.sh
sudo cp /lib64/ld-linux-x86-64.so.2 ld.so
BACKEND_LIBS="./ld.so ./sources/go-piper/piper/build/fi/lib/libfmt.a ./sources/go-piper/piper-phonemize/pi/lib/libonnxruntime.so.1.14.1 ./sources/go-piper/piper-phonemize/pi/src/libespeak-ng/libespeak-ng.so /usr/lib/x86_64-linux-gnu/libdl.so.2 /usr/lib/x86_64-linux-gnu/librt.so.1 /usr/lib/x86_64-linux-gnu/libpthread.so.0 ./sources/go-piper/piper-phonemize/pi/lib/libpiper_phonemize.so.1 ./sources/go-piper/piper/build/si/lib/libspdlog.a ./sources/go-piper/espeak/ei/lib/libucd.so" \
make -j4 dist
- uses: actions/upload-artifact@v4
make dist
else
STATIC=true make dist
fi
- uses: actions/upload-artifact@v3
with:
name: LocalAI-linux
name: ${{ matrix.build }}
path: release/
- name: Release
uses: softprops/action-gh-release@v2
uses: softprops/action-gh-release@v1
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true
build-macOS-x86_64:
runs-on: macos-13
build-stablediffusion:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- uses: actions/setup-go@v5
- uses: actions/setup-go@v4
with:
go-version: '1.21.x'
cache: false
- name: Dependencies
run: |
sudo apt-get install -y --no-install-recommends libopencv-dev
- name: Build stablediffusion
run: |
make backend-assets/grpc/stablediffusion
mkdir -p release && cp backend-assets/grpc/stablediffusion release
- uses: actions/upload-artifact@v3
with:
name: stablediffusion
path: release/
- name: Release
uses: softprops/action-gh-release@v1
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
release/*
build-macOS:
strategy:
matrix:
include:
- build: 'avx2'
defines: ''
- build: 'avx'
defines: '-DLLAMA_AVX2=OFF'
- build: 'avx512'
defines: '-DLLAMA_AVX512=ON'
runs-on: macOS-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- uses: actions/setup-go@v4
with:
go-version: '1.21.x'
cache: false
- name: Dependencies
run: |
brew install protobuf grpc
make install-go-tools
- name: Build
id: build
env:
CMAKE_ARGS: "${{ matrix.defines }}"
BUILD_ID: "${{ matrix.build }}"
run: |
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
export PATH=$PATH:$GOPATH/bin
export SKIP_GRPC_BACKEND=backend-assets/grpc/whisper
make dist
- uses: actions/upload-artifact@v4
- uses: actions/upload-artifact@v3
with:
name: LocalAI-MacOS-x86_64
name: ${{ matrix.build }}
path: release/
- name: Release
uses: softprops/action-gh-release@v2
uses: softprops/action-gh-release@v1
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true
build-macOS-arm64:
runs-on: macos-14
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- uses: actions/setup-go@v5
with:
go-version: '1.21.x'
cache: false
- name: Dependencies
run: |
brew install protobuf grpc libomp llvm
make install-go-tools
- name: Build
id: build
run: |
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
export PATH=$PATH:$GOPATH/bin
export CC=/opt/homebrew/opt/llvm/bin/clang
make dist
- uses: actions/upload-artifact@v4
with:
name: LocalAI-MacOS-arm64
path: release/
- name: Release
uses: softprops/action-gh-release@v2
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true

View file

@ -14,17 +14,14 @@ jobs:
GO111MODULE: on
steps:
- name: Checkout Source
uses: actions/checkout@v4
if: ${{ github.actor != 'dependabot[bot]' }}
uses: actions/checkout@v3
- name: Run Gosec Security Scanner
if: ${{ github.actor != 'dependabot[bot]' }}
uses: securego/gosec@v2.22.4
uses: securego/gosec@master
with:
# we let the report trigger content trigger a failure using the GitHub Security features.
args: '-no-fail -fmt sarif -out results.sarif ./...'
- name: Upload SARIF file
if: ${{ github.actor != 'dependabot[bot]' }}
uses: github/codeql-action/upload-sarif@v3
uses: github/codeql-action/upload-sarif@v2
with:
# Path to SARIF file relative to the root of the repository
sarif_file: results.sarif

View file

@ -25,17 +25,25 @@ jobs:
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
sudo rm -rfv /usr/bin/conda || true
- name: Test transformers
run: |
export PATH=$PATH:/opt/conda/bin
make --jobs=5 --output-sync=target -C backend/python/transformers
make --jobs=5 --output-sync=target -C backend/python/transformers test
tests-rerankers:
tests-sentencetransformers:
runs-on: ubuntu-latest
steps:
- name: Clone
@ -46,16 +54,23 @@ jobs:
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test rerankers
sudo rm -rfv /usr/bin/conda || true
- name: Test sentencetransformers
run: |
make --jobs=5 --output-sync=target -C backend/python/rerankers
make --jobs=5 --output-sync=target -C backend/python/rerankers test
export PATH=$PATH:/opt/conda/bin
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers test
tests-diffusers:
runs-on: ubuntu-latest
@ -67,38 +82,58 @@ jobs:
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install -y build-essential ffmpeg
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
pip install --user --no-cache-dir grpcio-tools==1.64.1
sudo rm -rfv /usr/bin/conda || true
- name: Test diffusers
run: |
export PATH=$PATH:/opt/conda/bin
make --jobs=5 --output-sync=target -C backend/python/diffusers
make --jobs=5 --output-sync=target -C backend/python/diffusers test
#tests-vllm:
# runs-on: ubuntu-latest
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# submodules: true
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install -y build-essential ffmpeg
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# sudo apt-get install -y libopencv-dev
# # Install UV
# curl -LsSf https://astral.sh/uv/install.sh | sh
# pip install --user --no-cache-dir grpcio-tools==1.64.1
# - name: Test vllm backend
# run: |
# make --jobs=5 --output-sync=target -C backend/python/vllm
# make --jobs=5 --output-sync=target -C backend/python/vllm test
# tests-transformers-musicgen:
tests-transformers-musicgen:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev
sudo rm -rfv /usr/bin/conda || true
- name: Test transformers-musicgen
run: |
export PATH=$PATH:/opt/conda/bin
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen test
# tests-petals:
# runs-on: ubuntu-latest
# steps:
# - name: Clone
@ -109,16 +144,25 @@ jobs:
# run: |
# sudo apt-get update
# sudo apt-get install build-essential ffmpeg
# # Install UV
# curl -LsSf https://astral.sh/uv/install.sh | sh
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
# sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
# gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
# sudo apt-get update && \
# sudo apt-get install -y conda
# sudo apt-get install -y ca-certificates cmake curl patch
# sudo apt-get install -y libopencv-dev
# pip install --user --no-cache-dir grpcio-tools==1.64.1
# - name: Test transformers-musicgen
# sudo rm -rfv /usr/bin/conda || true
# - name: Test petals
# run: |
# make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen
# make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen test
# export PATH=$PATH:/opt/conda/bin
# make --jobs=5 --output-sync=target -C backend/python/petals
# make --jobs=5 --output-sync=target -C backend/python/petals test
# tests-bark:
# runs-on: ubuntu-latest
@ -171,14 +215,21 @@ jobs:
# run: |
# sudo apt-get update
# sudo apt-get install build-essential ffmpeg
# # Install UV
# curl -LsSf https://astral.sh/uv/install.sh | sh
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
# sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
# gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
# sudo apt-get update && \
# sudo apt-get install -y conda
# sudo apt-get install -y ca-certificates cmake curl patch
# sudo apt-get install -y libopencv-dev
# pip install --user --no-cache-dir grpcio-tools==1.64.1
# sudo rm -rfv /usr/bin/conda || true
# - name: Test bark
# run: |
# export PATH=$PATH:/opt/conda/bin
# make --jobs=5 --output-sync=target -C backend/python/bark
# make --jobs=5 --output-sync=target -C backend/python/bark test
@ -196,15 +247,47 @@ jobs:
# run: |
# sudo apt-get update
# sudo apt-get install build-essential ffmpeg
# # Install UV
# curl -LsSf https://astral.sh/uv/install.sh | sh
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
# sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
# gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
# sudo apt-get update && \
# sudo apt-get install -y conda
# sudo apt-get install -y ca-certificates cmake curl patch
# sudo apt-get install -y libopencv-dev
# pip install --user --no-cache-dir grpcio-tools==1.64.1
# sudo rm -rfv /usr/bin/conda || true
# - name: Test vllm
# run: |
# export PATH=$PATH:/opt/conda/bin
# make --jobs=5 --output-sync=target -C backend/python/vllm
# make --jobs=5 --output-sync=target -C backend/python/vllm test
tests-vallex:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev
sudo rm -rfv /usr/bin/conda || true
- name: Test vall-e-x
run: |
export PATH=$PATH:/opt/conda/bin
make --jobs=5 --output-sync=target -C backend/python/vall-e-x
make --jobs=5 --output-sync=target -C backend/python/vall-e-x test
tests-coqui:
runs-on: ubuntu-latest
@ -217,11 +300,18 @@ jobs:
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
sudo apt-get install -y ca-certificates cmake curl patch espeak espeak-ng python3-pip
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
pip install --user --no-cache-dir grpcio-tools==1.64.1
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch espeak espeak-ng
sudo rm -rfv /usr/bin/conda || true
- name: Test coqui
run: |
export PATH=$PATH:/opt/conda/bin
make --jobs=5 --output-sync=target -C backend/python/coqui
make --jobs=5 --output-sync=target -C backend/python/coqui test

View file

@ -10,7 +10,7 @@ on:
- '*'
env:
GRPC_VERSION: v1.65.0
GRPC_VERSION: v1.58.0
concurrency:
group: ci-tests-${{ github.head_ref || github.ref }}-${{ github.repository }}
@ -60,7 +60,7 @@ jobs:
with:
submodules: true
- name: Setup Go ${{ matrix.go-version }}
uses: actions/setup-go@v5
uses: actions/setup-go@v4
with:
go-version: ${{ matrix.go-version }}
cache: false
@ -70,8 +70,7 @@ jobs:
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ccache upx-ucl curl ffmpeg
sudo apt-get install -y libgmock-dev clang
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
@ -79,39 +78,21 @@ jobs:
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake patch python3-pip unzip
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev
curl -L -s https://github.com/protocolbuffers/protobuf/releases/download/v26.1/protoc-26.1-linux-x86_64.zip -o protoc.zip && \
unzip -j -d /usr/local/bin protoc.zip bin/protoc && \
rm protoc.zip
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get install -y cuda-nvcc-${CUDA_VERSION} libcublas-dev-${CUDA_VERSION}
export CUDACXX=/usr/local/cuda/bin/nvcc
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install github.com/GeertJohan/go.rice/rice@latest
# The python3-grpc-tools package in 22.04 is too old
pip install --user grpcio-tools
make -C backend/python/transformers
sudo rm -rfv /usr/bin/conda || true
PATH=$PATH:/opt/conda/bin make -C backend/python/sentencetransformers
# Pre-build piper before we start tests in order to have shared libraries in place
make sources/go-piper && \
GO_TAGS="tts" make -C sources/go-piper piper.o && \
sudo cp -rfv sources/go-piper/piper-phonemize/pi/lib/. /usr/lib/
env:
CUDA_VERSION: 12-4
sudo cp -rfv sources/go-piper/piper-phonemize/pi/lib/. /usr/lib/ && \
# Pre-build stable diffusion before we install a newer version of abseil (not compatible with stablediffusion-ncn)
GO_TAGS="stablediffusion tts" GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
- name: Cache grpc
id: cache-grpc
uses: actions/cache@v4
uses: actions/cache@v3
with:
path: grpc
key: ${{ runner.os }}-grpc-${{ env.GRPC_VERSION }}
@ -119,8 +100,7 @@ jobs:
if: steps.cache-grpc.outputs.cache-hit != 'true'
run: |
git clone --recurse-submodules -b ${{ env.GRPC_VERSION }} --depth 1 --jobs 5 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && sed -i "216i\ TESTONLY" "third_party/abseil-cpp/absl/container/CMakeLists.txt" && mkdir -p cmake/build && cd cmake/build && \
cmake -DgRPC_INSTALL=ON \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make --jobs 5
- name: Install gRPC
@ -128,14 +108,11 @@ jobs:
cd grpc && cd cmake/build && sudo make --jobs 5 install
- name: Test
run: |
PATH="$PATH:/root/go/bin" GO_TAGS="tts" make --jobs 5 --output-sync=target test
GO_TAGS="stablediffusion tts" make --jobs 5 --output-sync=target test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true
uses: mxschmitt/action-tmate@v3
timeout-minutes: 5
tests-aio-container:
runs-on: ubuntu-latest
@ -176,31 +153,18 @@ jobs:
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
# Install protoc
curl -L -s https://github.com/protocolbuffers/protobuf/releases/download/v26.1/protoc-26.1-linux-x86_64.zip -o protoc.zip && \
unzip -j -d /usr/local/bin protoc.zip bin/protoc && \
rm protoc.zip
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install github.com/GeertJohan/go.rice/rice@latest
PATH="$PATH:$HOME/go/bin" make protogen-go
- name: Build images
run: |
docker build --build-arg FFMPEG=true --build-arg IMAGE_TYPE=extras --build-arg EXTRA_BACKENDS=rerankers --build-arg MAKEFLAGS="--jobs=5 --output-sync=target" -t local-ai:tests -f Dockerfile .
docker build --build-arg FFMPEG=true --build-arg IMAGE_TYPE=core --build-arg MAKEFLAGS="--jobs=5 --output-sync=target" -t local-ai:tests -f Dockerfile .
BASE_IMAGE=local-ai:tests DOCKER_AIO_IMAGE=local-ai-aio:test make docker-aio
- name: Test
run: |
PATH="$PATH:$HOME/go/bin" LOCALAI_MODELS_DIR=$PWD/models LOCALAI_IMAGE_TAG=test LOCALAI_IMAGE=local-ai-aio \
LOCALAI_MODELS_DIR=$PWD/models LOCALAI_IMAGE_TAG=test LOCALAI_IMAGE=local-ai-aio \
make run-e2e-aio
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true
uses: mxschmitt/action-tmate@v3
timeout-minutes: 5
tests-apple:
runs-on: macOS-14
@ -213,7 +177,7 @@ jobs:
with:
submodules: true
- name: Setup Go ${{ matrix.go-version }}
uses: actions/setup-go@v5
uses: actions/setup-go@v4
with:
go-version: ${{ matrix.go-version }}
cache: false
@ -222,21 +186,15 @@ jobs:
run: go version
- name: Dependencies
run: |
brew install protobuf grpc make protoc-gen-go protoc-gen-go-grpc libomp llvm
pip install --user --no-cache-dir grpcio-tools
go install github.com/GeertJohan/go.rice/rice@latest
brew install protobuf grpc make
- name: Test
run: |
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
export CC=/opt/homebrew/opt/llvm/bin/clang
# Used to run the newer GNUMake version from brew that supports --output-sync
export PATH="/opt/homebrew/opt/make/libexec/gnubin:$PATH"
BUILD_TYPE="GITHUB_CI_HAS_BROKEN_METAL" CMAKE_ARGS="-DGGML_F16C=OFF -DGGML_AVX512=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF" make --jobs 4 --output-sync=target test
BUILD_TYPE="GITHUB_CI_HAS_BROKEN_METAL" CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make --jobs 4 --output-sync=target test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.22
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true
uses: mxschmitt/action-tmate@v3
timeout-minutes: 5

View file

@ -1,37 +0,0 @@
name: Update swagger
on:
schedule:
- cron: 0 20 * * *
workflow_dispatch:
jobs:
swagger:
strategy:
fail-fast: false
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
go-version: 'stable'
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install protobuf-compiler
- run: |
go install github.com/swaggo/swag/cmd/swag@latest
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
- name: Bump swagger 🔧
run: |
make protogen-go swagger
- name: Create Pull Request
uses: peter-evans/create-pull-request@v7
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI
commit-message: 'feat(swagger): update swagger'
title: 'feat(swagger): update swagger'
branch: "update/swagger"
body: Update swagger
signoff: true

View file

@ -1,18 +0,0 @@
name: 'Yamllint GitHub Actions'
on:
- pull_request
jobs:
yamllint:
name: 'Yamllint'
runs-on: ubuntu-latest
steps:
- name: 'Checkout'
uses: actions/checkout@master
- name: 'Yamllint'
uses: karancode/yamllint-github-action@master
with:
yamllint_file_or_dir: 'gallery'
yamllint_strict: false
yamllint_comment: true
env:
GITHUB_ACCESS_TOKEN: ${{ secrets.GITHUB_TOKEN }}

20
.gitignore vendored
View file

@ -2,17 +2,14 @@
/sources/
__pycache__/
*.a
*.o
get-sources
prepare-sources
/backend/cpp/llama/grpc-server
/backend/cpp/llama/llama.cpp
/backend/cpp/llama-*
*.log
go-ggml-transformers
go-gpt2
go-rwkv
whisper.cpp
/bloomz
go-bert
@ -42,18 +39,3 @@ backend-assets/*
!backend-assets/.keep
prepare
/ggml-metal.metal
docs/static/gallery.html
# Protobuf generated files
*.pb.go
*pb2.py
*pb2_grpc.py
# SonarQube
.scannerwork
# backend virtual environments
**/venv
# per-developer customization files for the development container
.devcontainer/customization/*

21
.vscode/launch.json vendored
View file

@ -3,12 +3,12 @@
"configurations": [
{
"name": "Python: Current File",
"type": "debugpy",
"type": "python",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"justMyCode": false,
"cwd": "${fileDirname}",
"cwd": "${workspaceFolder}/examples/langchain-chroma",
"env": {
"OPENAI_API_BASE": "http://localhost:8080/v1",
"OPENAI_API_KEY": "abc"
@ -19,16 +19,15 @@
"type": "go",
"request": "launch",
"mode": "debug",
"program": "${workspaceRoot}",
"args": [],
"program": "${workspaceFolder}/main.go",
"args": [
"api"
],
"env": {
"LOCALAI_LOG_LEVEL": "debug",
"LOCALAI_P2P": "true",
"LOCALAI_FEDERATED": "true"
},
"buildFlags": ["-tags", "p2p tts", "-v"],
"envFile": "${workspaceFolder}/.env",
"cwd": "${workspaceRoot}"
"C_INCLUDE_PATH": "${workspaceFolder}/go-llama:${workspaceFolder}/go-stable-diffusion/:${workspaceFolder}/gpt4all/gpt4all-bindings/golang/:${workspaceFolder}/go-gpt2:${workspaceFolder}/go-rwkv:${workspaceFolder}/whisper.cpp:${workspaceFolder}/go-bert:${workspaceFolder}/bloomz",
"LIBRARY_PATH": "${workspaceFolder}/go-llama:${workspaceFolder}/go-stable-diffusion/:${workspaceFolder}/gpt4all/gpt4all-bindings/golang/:${workspaceFolder}/go-gpt2:${workspaceFolder}/go-rwkv:${workspaceFolder}/whisper.cpp:${workspaceFolder}/go-bert:${workspaceFolder}/bloomz",
"DEBUG": "true"
}
}
]
}

View file

@ -1,4 +0,0 @@
extends: default
rules:
line-length: disable

View file

@ -1,4 +1,4 @@
# Contributing to LocalAI
# Contributing to localAI
Thank you for your interest in contributing to LocalAI! We appreciate your time and effort in helping to improve our project. Before you get started, please take a moment to review these guidelines.
@ -15,6 +15,8 @@ Thank you for your interest in contributing to LocalAI! We appreciate your time
- [Documentation](#documentation)
- [Community and Communication](#community-and-communication)
## Getting Started
### Prerequisites
@ -27,9 +29,8 @@ Thank you for your interest in contributing to LocalAI! We appreciate your time
1. Clone the repository: `git clone https://github.com/go-skynet/LocalAI.git`
2. Navigate to the project directory: `cd LocalAI`
3. Install the required dependencies ( see https://localai.io/basics/build/#build-localai-locally )
4. Build LocalAI: `make build`
5. Run LocalAI: `./local-ai`
3. Install the required dependencies: `make prepare`
4. Run LocalAI: `make run`
## Contributing
@ -52,33 +53,20 @@ If you find a bug, have a feature request, or encounter any issues, please check
## Coding Guidelines
- No specific coding guidelines at the moment. Please make sure the code can be tested. The most popular lint tools like [`golangci-lint`](https://golangci-lint.run) can help you here.
- No specific coding guidelines at the moment. Please make sure the code can be tested. The most popular lint tools like []`golangci-lint`](https://golangci-lint.run) can help you here.
## Testing
`make test` cannot handle all the model now. Please be sure to add a test case for the new features or the part was changed.
### Running AIO tests
All-In-One images has a set of tests that automatically verifies that most of the endpoints works correctly, a flow can be :
```bash
# Build the LocalAI docker image
make DOCKER_IMAGE=local-ai docker
# Build the corresponding AIO image
BASE_IMAGE=local-ai DOCKER_AIO_IMAGE=local-ai-aio:test make docker-aio
# Run the AIO e2e tests
LOCALAI_IMAGE_TAG=test LOCALAI_IMAGE=local-ai-aio make run-e2e-aio
```
## Documentation
We are welcome the contribution of the documents, please open new PR or create a new issue. The documentation is available under `docs/` https://github.com/mudler/LocalAI/tree/master/docs
- We are welcome the contribution of the documents, please open new PR in the official document repo [localai-website](https://github.com/go-skynet/localai-website)
## Community and Communication
- You can reach out via the Github issue tracker.
- Open a new discussion at [Discussion](https://github.com/go-skynet/LocalAI/discussions)
- Join the Discord channel [Discord](https://discord.gg/uJAeKSAGDy)
---

View file

@ -1,257 +1,125 @@
ARG IMAGE_TYPE=extras
ARG BASE_IMAGE=ubuntu:22.04
ARG GRPC_BASE_IMAGE=${BASE_IMAGE}
ARG INTEL_BASE_IMAGE=${BASE_IMAGE}
# The requirements-core target is common to all images. It should not be placed in requirements-core unless every single build will use it.
FROM ${BASE_IMAGE} AS requirements-core
# extras or core
FROM ${BASE_IMAGE} as requirements-core
USER root
ARG GO_VERSION=1.22.6
ARG CMAKE_VERSION=3.26.4
ARG CMAKE_FROM_SOURCE=false
ARG GO_VERSION=1.21.7
ARG BUILD_TYPE
ARG CUDA_MAJOR_VERSION=11
ARG CUDA_MINOR_VERSION=7
ARG TARGETARCH
ARG TARGETVARIANT
ENV BUILD_TYPE=${BUILD_TYPE}
ENV DEBIAN_FRONTEND=noninteractive
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,transformers:/build/backend/python/transformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,faster-whisper:/build/backend/python/faster-whisper/run.sh,kokoro:/build/backend/python/kokoro/run.sh,vllm:/build/backend/python/vllm/run.sh,exllama2:/build/backend/python/exllama2/run.sh"
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh"
ARG GO_TAGS="stablediffusion tinydream tts"
RUN apt-get update && \
apt-get install -y --no-install-recommends \
build-essential \
ccache \
ca-certificates \
curl libssl-dev \
git \
git-lfs \
unzip upx-ucl && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Install CMake (the version in 22.04 is too old)
RUN <<EOT bash
if [ "${CMAKE_FROM_SOURCE}}" = "true" ]; then
curl -L -s https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}.tar.gz -o cmake.tar.gz && tar xvf cmake.tar.gz && cd cmake-${CMAKE_VERSION} && ./configure && make && make install
else
apt-get update && \
apt-get install -y \
cmake && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
apt-get install -y ca-certificates curl patch pip cmake git && apt-get clean
# Install Go
RUN curl -L -s https://go.dev/dl/go${GO_VERSION}.linux-${TARGETARCH}.tar.gz | tar -C /usr/local -xz
ENV PATH=$PATH:/root/go/bin:/usr/local/go/bin
# Install grpc compilers and rice
RUN go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2 && \
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af && \
go install github.com/GeertJohan/go.rice/rice@latest
RUN curl -L -s https://go.dev/dl/go$GO_VERSION.linux-$TARGETARCH.tar.gz | tar -C /usr/local -xz
ENV PATH $PATH:/usr/local/go/bin
COPY --chmod=644 custom-ca-certs/* /usr/local/share/ca-certificates/
RUN update-ca-certificates
RUN test -n "$TARGETARCH" \
|| (echo 'warn: missing $TARGETARCH, either set this `ARG` manually, or run using `docker buildkit`')
# Use the variables in subsequent instructions
RUN echo "Target Architecture: $TARGETARCH"
RUN echo "Target Variant: $TARGETVARIANT"
# Cuda
ENV PATH=/usr/local/cuda/bin:${PATH}
# HipBLAS requirements
ENV PATH=/opt/rocm/bin:${PATH}
# OpenBLAS requirements and stable diffusion
RUN apt-get update && \
apt-get install -y --no-install-recommends \
libopenblas-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
WORKDIR /build
###################################
###################################
# The requirements-extras target is for any builds with IMAGE_TYPE=extras. It should not be placed in this target unless every IMAGE_TYPE=extras build will use it
FROM requirements-core AS requirements-extras
# Install uv as a system package
RUN curl -LsSf https://astral.sh/uv/install.sh | UV_INSTALL_DIR=/usr/bin sh
ENV PATH="/root/.cargo/bin:${PATH}"
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
RUN apt-get update && \
apt-get install -y --no-install-recommends \
espeak-ng \
espeak \
python3-pip \
python-is-python3 \
python3-dev llvm \
python3-venv && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* && \
pip install --upgrade pip
# Install grpcio-tools (the version in 22.04 is too old)
RUN pip install --user grpcio-tools
###################################
###################################
# The requirements-drivers target is for BUILD_TYPE specific items. If you need to install something specific to CUDA, or specific to ROCM, it goes here.
# This target will be built on top of requirements-core or requirements-extras as retermined by the IMAGE_TYPE build-arg
FROM requirements-${IMAGE_TYPE} AS requirements-drivers
ARG BUILD_TYPE
ARG CUDA_MAJOR_VERSION=12
ARG CUDA_MINOR_VERSION=0
ARG SKIP_DRIVERS=false
ENV BUILD_TYPE=${BUILD_TYPE}
# Vulkan requirements
RUN <<EOT bash
if [ "${BUILD_TYPE}" = "vulkan" ] && [ "${SKIP_DRIVERS}" = "false" ]; then
apt-get update && \
apt-get install -y --no-install-recommends \
software-properties-common pciutils wget gpg-agent && \
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
apt-get update && \
apt-get install -y \
vulkan-sdk && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# CuBLAS requirements
RUN <<EOT bash
if [ "${BUILD_TYPE}" = "cublas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then
apt-get update && \
apt-get install -y --no-install-recommends \
software-properties-common pciutils
if [ "amd64" = "$TARGETARCH" ]; then
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
fi
if [ "arm64" = "$TARGETARCH" ]; then
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/arm64/cuda-keyring_1.1-1_all.deb
fi
RUN if [ "${BUILD_TYPE}" = "cublas" ]; then \
apt-get install -y software-properties-common && \
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb && \
dpkg -i cuda-keyring_1.1-1_all.deb && \
rm -f cuda-keyring_1.1-1_all.deb && \
apt-get update && \
apt-get install -y --no-install-recommends \
cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcufft-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcurand-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# If we are building with clblas support, we need the libraries for the builds
RUN if [ "${BUILD_TYPE}" = "clblas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
libclblast-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* \
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcurand-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && apt-get clean \
; fi
RUN if [ "${BUILD_TYPE}" = "hipblas" ] && [ "${SKIP_DRIVERS}" = "false" ]; then \
# Cuda
ENV PATH /usr/local/cuda/bin:${PATH}
# HipBLAS requirements
ENV PATH /opt/rocm/bin:${PATH}
# OpenBLAS requirements and stable diffusion
RUN apt-get install -y \
libopenblas-dev \
libopencv-dev \
&& apt-get clean
# Set up OpenCV
RUN ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
WORKDIR /build
RUN test -n "$TARGETARCH" \
|| (echo 'warn: missing $TARGETARCH, either set this `ARG` manually, or run using `docker buildkit`')
###################################
###################################
FROM requirements-core as requirements-extras
RUN curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list && \
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list && \
apt-get update && \
apt-get install -y --no-install-recommends \
hipblas-dev \
rocblas-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* && \
# I have no idea why, but the ROCM lib packages don't trigger ldconfig after they install, which results in local-ai and others not being able
# to locate the libraries. We run ldconfig ourselves to work around this packaging deficiency
ldconfig \
apt-get install -y conda && apt-get clean
ENV PATH="/root/.cargo/bin:${PATH}"
RUN apt-get install -y python3-pip && apt-get clean
RUN pip install --upgrade pip
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
RUN apt-get install -y espeak-ng espeak && apt-get clean
RUN if [ ! -e /usr/bin/python ]; then \
ln -s /usr/bin/python3 /usr/bin/python \
; fi
###################################
###################################
# Temporary workaround for Intel's repository to work correctly
# https://community.intel.com/t5/Intel-oneAPI-Math-Kernel-Library/APT-Repository-not-working-signatures-invalid/m-p/1599436/highlight/true#M36143
# This is a temporary workaround until Intel fixes their repository
FROM ${INTEL_BASE_IMAGE} AS intel
RUN wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | \
gpg --yes --dearmor --output /usr/share/keyrings/intel-graphics.gpg
RUN echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy/lts/2350 unified" > /etc/apt/sources.list.d/intel-graphics.list
FROM ${BASE_IMAGE} as grpc
###################################
###################################
ARG MAKEFLAGS
ARG GRPC_VERSION=v1.58.0
# The grpc target does one thing, it builds and installs GRPC. This is in it's own layer so that it can be effectively cached by CI.
# You probably don't need to change anything here, and if you do, make sure that CI is adjusted so that the cache continues to work.
FROM ${GRPC_BASE_IMAGE} AS grpc
# This is a bit of a hack, but it's required in order to be able to effectively cache this layer in CI
ARG GRPC_MAKEFLAGS="-j4 -Otarget"
ARG GRPC_VERSION=v1.65.0
ARG CMAKE_FROM_SOURCE=false
ARG CMAKE_VERSION=3.26.4
ENV MAKEFLAGS=${GRPC_MAKEFLAGS}
ENV MAKEFLAGS=${MAKEFLAGS}
WORKDIR /build
RUN apt-get update && \
apt-get install -y --no-install-recommends \
ca-certificates \
build-essential curl libssl-dev \
git && \
apt-get install -y g++ cmake git && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Install CMake (the version in 22.04 is too old)
RUN <<EOT bash
if [ "${CMAKE_FROM_SOURCE}}" = "true" ]; then
curl -L -s https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}.tar.gz -o cmake.tar.gz && tar xvf cmake.tar.gz && cd cmake-${CMAKE_VERSION} && ./configure && make && make install
else
apt-get update && \
apt-get install -y \
cmake && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
RUN git clone --recurse-submodules --jobs 4 -b ${GRPC_VERSION} --depth 1 --shallow-submodules https://github.com/grpc/grpc
# We install GRPC to a different prefix here so that we can copy in only the build artifacts later
# saves several hundred MB on the final docker image size vs copying in the entire GRPC source tree
# and running make install in the target container
RUN git clone --recurse-submodules --jobs 4 -b ${GRPC_VERSION} --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
mkdir -p /build/grpc/cmake/build && \
cd /build/grpc/cmake/build && \
sed -i "216i\ TESTONLY" "../../third_party/abseil-cpp/absl/container/CMakeLists.txt" && \
cmake -DgRPC_INSTALL=ON -DgRPC_BUILD_TESTS=OFF -DCMAKE_INSTALL_PREFIX:PATH=/opt/grpc ../.. && \
make && \
make install && \
rm -rf /build
RUN cd grpc && \
mkdir -p cmake/build && \
cd cmake/build && \
cmake -DgRPC_INSTALL=ON -DgRPC_BUILD_TESTS=OFF ../.. && \
make
###################################
###################################
# The builder-base target has the arguments, variables, and copies shared between full builder images and the uncompiled devcontainer
FROM requirements-${IMAGE_TYPE} as builder
FROM requirements-drivers AS builder-base
ARG GO_TAGS="tts p2p"
ARG GO_TAGS="stablediffusion tts"
ARG GRPC_BACKENDS
ARG MAKEFLAGS
ARG LD_FLAGS="-s -w"
ENV GRPC_BACKENDS=${GRPC_BACKENDS}
ENV GO_TAGS=${GO_TAGS}
@ -259,55 +127,30 @@ ENV MAKEFLAGS=${MAKEFLAGS}
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_REQUIRE_CUDA="cuda>=${CUDA_MAJOR_VERSION}.0"
ENV NVIDIA_VISIBLE_DEVICES=all
ENV LD_FLAGS=${LD_FLAGS}
RUN echo "GO_TAGS: $GO_TAGS" && echo "TARGETARCH: $TARGETARCH"
WORKDIR /build
# We need protoc installed, and the version in 22.04 is too old. We will create one as part installing the GRPC build below
# but that will also being in a newer version of absl which stablediffusion cannot compile with. This version of protoc is only
# here so that we can generate the grpc code for the stablediffusion build
RUN <<EOT bash
if [ "amd64" = "$TARGETARCH" ]; then
curl -L -s https://github.com/protocolbuffers/protobuf/releases/download/v27.1/protoc-27.1-linux-x86_64.zip -o protoc.zip && \
unzip -j -d /usr/local/bin protoc.zip bin/protoc && \
rm protoc.zip
fi
if [ "arm64" = "$TARGETARCH" ]; then
curl -L -s https://github.com/protocolbuffers/protobuf/releases/download/v27.1/protoc-27.1-linux-aarch_64.zip -o protoc.zip && \
unzip -j -d /usr/local/bin protoc.zip bin/protoc && \
rm protoc.zip
fi
EOT
###################################
###################################
# The builder target compiles LocalAI. This target is not the target that will be uploaded to the registry.
# Adjustments to the build process should likely be made here.
FROM builder-base AS builder
# Install the pre-built GRPC
COPY --from=grpc /opt/grpc /usr/local
# Rebuild with defaults backends
WORKDIR /build
COPY . .
COPY .git .
RUN echo "GO_TAGS: $GO_TAGS"
RUN make prepare
## Build the binary
## If we're on arm64 AND using cublas/hipblas, skip some of the llama-compat backends to save space
## Otherwise just run the normal build
RUN if [ "${TARGETARCH}" = "arm64" ] || [ "${BUILD_TYPE}" = "hipblas" ]; then \
SKIP_GRPC_BACKEND="backend-assets/grpc/llama-cpp-avx512 backend-assets/grpc/llama-cpp-avx backend-assets/grpc/llama-cpp-avx2" make build; \
else \
make build; \
fi
# If we are building with clblas support, we need the libraries for the builds
RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
apt-get update && \
apt-get install -y libclblast-dev && \
apt-get clean \
; fi
# stablediffusion does not tolerate a newer version of abseil, build it first
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
COPY --from=grpc /build/grpc ./grpc/
RUN cd /build/grpc/cmake/build && make install
# Rebuild with defaults backends
RUN make build
RUN if [ ! -d "/build/sources/go-piper/piper-phonemize/pi/lib/" ]; then \
mkdir -p /build/sources/go-piper/piper-phonemize/pi/lib/ \
@ -317,47 +160,12 @@ RUN if [ ! -d "/build/sources/go-piper/piper-phonemize/pi/lib/" ]; then \
###################################
###################################
# The devcontainer target is not used on CI. It is a target for developers to use locally -
# rather than copying files it mounts them locally and leaves building to the developer
FROM builder-base AS devcontainer
ARG FFMPEG
COPY --from=grpc /opt/grpc /usr/local
COPY .devcontainer-scripts /.devcontainer-scripts
# Add FFmpeg
RUN if [ "${FFMPEG}" = "true" ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
ffmpeg && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* \
; fi
RUN apt-get update && \
apt-get install -y --no-install-recommends \
ssh less wget
# For the devcontainer, leave apt functional in case additional devtools are needed at runtime.
RUN go install github.com/go-delve/delve/cmd/dlv@latest
RUN go install github.com/mikefarah/yq/v4@latest
###################################
###################################
# This is the final target. The result of this target will be the image uploaded to the registry.
# If you cannot find a more suitable place for an addition, this layer is a suitable place for it.
FROM requirements-drivers
FROM requirements-${IMAGE_TYPE}
ARG FFMPEG
ARG BUILD_TYPE
ARG TARGETARCH
ARG IMAGE_TYPE=extras
ARG EXTRA_BACKENDS
ARG MAKEFLAGS
ENV BUILD_TYPE=${BUILD_TYPE}
@ -365,18 +173,22 @@ ENV REBUILD=false
ENV HEALTHCHECK_ENDPOINT=http://localhost:8080/readyz
ENV MAKEFLAGS=${MAKEFLAGS}
ARG CUDA_MAJOR_VERSION=12
ARG CUDA_MAJOR_VERSION=11
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_REQUIRE_CUDA="cuda>=${CUDA_MAJOR_VERSION}.0"
ENV NVIDIA_VISIBLE_DEVICES=all
ENV PIP_CACHE_PURGE=true
# Add FFmpeg
RUN if [ "${FFMPEG}" = "true" ]; then \
apt-get install -y ffmpeg && apt-get clean \
; fi
# Add OpenCL
RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
ffmpeg && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* \
apt-get install -y libclblast1 && \
apt-get clean \
; fi
WORKDIR /build
@ -388,9 +200,9 @@ WORKDIR /build
COPY . .
COPY --from=builder /build/sources ./sources/
COPY --from=grpc /opt/grpc /usr/local
COPY --from=grpc /build/grpc ./grpc/
RUN make prepare-sources
RUN make prepare-sources && cd /build/grpc/cmake/build && make install && rm -rf grpc
# Copy the binary
COPY --from=builder /build/local-ai ./
@ -398,44 +210,48 @@ COPY --from=builder /build/local-ai ./
# Copy shared libraries for piper
COPY --from=builder /build/sources/go-piper/piper-phonemize/pi/lib/* /usr/lib/
# Change the shell to bash so we can use [[ tests below
SHELL ["/bin/bash", "-c"]
# We try to strike a balance between individual layer size (as that affects total push time) and total image size
# Splitting the backends into more groups with fewer items results in a larger image, but a smaller size for the largest layer
# Splitting the backends into fewer groups with more items results in a smaller image, but a larger size for the largest layer
# do not let stablediffusion rebuild (requires an older version of absl)
COPY --from=builder /build/backend-assets/grpc/stablediffusion ./backend-assets/grpc/stablediffusion
RUN if [[ ( "${IMAGE_TYPE}" == "extras ")]]; then \
apt-get -qq -y install espeak-ng \
## Duplicated from Makefile to avoid having a big layer that's hard to push
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/autogptq \
; fi
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "coqui" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/coqui \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "faster-whisper" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/faster-whisper \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "diffusers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/bark \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/diffusers \
; fi
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "kokoro" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/kokoro \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "exllama2" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/exllama2 \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "transformers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/vllm \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/mamba \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/sentencetransformers \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/transformers \
; fi
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "vllm" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/vllm \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "bark" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/bark \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "rerankers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/rerankers \
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/vall-e-x \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/exllama \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/exllama2 \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/petals \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/transformers-musicgen \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/coqui \
; fi
# Make sure the models directory exists
@ -443,7 +259,7 @@ RUN mkdir -p /build/models
# Define the health check command
HEALTHCHECK --interval=1m --timeout=10m --retries=10 \
CMD curl -f ${HEALTHCHECK_ENDPOINT} || exit 1
CMD curl -f $HEALTHCHECK_ENDPOINT || exit 1
VOLUME /build/models
EXPOSE 8080

View file

@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023-2025 Ettore Di Giacinto (mudler@localai.io)
Copyright (c) 2023-2024 Ettore Di Giacinto (mudler@localai.io)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

730
Makefile

File diff suppressed because it is too large Load diff

257
README.md
View file

@ -1,6 +1,7 @@
<h1 align="center">
<br>
<img height="300" src="./core/http/static/logo.png"> <br>
<img height="300" src="https://github.com/go-skynet/LocalAI/assets/2420543/0966aa2a-166e-4f99-a3e5-6c915fc997dd"> <br>
LocalAI
<br>
</h1>
@ -30,219 +31,73 @@
<p align="center">
<a href="https://twitter.com/LocalAI_API" target="blank">
<img src="https://img.shields.io/badge/X-%23000000.svg?style=for-the-badge&logo=X&logoColor=white&label=LocalAI_API" alt="Follow LocalAI_API"/>
<img src="https://img.shields.io/twitter/follow/LocalAI_API?label=Follow: LocalAI_API&style=social" alt="Follow LocalAI_API"/>
</a>
<a href="https://discord.gg/uJAeKSAGDy" target="blank">
<img src="https://dcbadge.vercel.app/api/server/uJAeKSAGDy?style=flat-square&theme=default-inverted" alt="Join LocalAI Discord Community"/>
</a>
</p>
<p align="center">
<a href="https://trendshift.io/repositories/5539" target="_blank"><img src="https://trendshift.io/api/badge/repositories/5539" alt="mudler%2FLocalAI | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</p>
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [🖼️ Models](https://models.localai.io/) [🚀 Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap) [🥽 Demo](https://demo.localai.io) [🌍 Explorer](https://explorer.localai.io) [🛫 Examples](https://github.com/mudler/LocalAI-examples) Try on
[![Telegram](https://img.shields.io/badge/Telegram-2CA5E0?style=for-the-badge&logo=telegram&logoColor=white)](https://t.me/localaiofficial_bot)
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API that's compatible with OpenAI (Elevenlabs, Anthropic... ) API specifications for local AI inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU. It is created and maintained by [Ettore Di Giacinto](https://github.com/mudler).
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API thats compatible with OpenAI (Elevenlabs, Anthropic... ) API specifications for local AI inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU.
## 🔥🔥 Hot topics / Roadmap
## 📚🆕 Local Stack Family
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
🆕 LocalAI is now part of a comprehensive suite of AI tools designed to work together:
- Landing page: https://github.com/mudler/LocalAI/pull/1922
- Openvino support: https://github.com/mudler/LocalAI/pull/1892
- Vector store: https://github.com/mudler/LocalAI/pull/1795
- All-in-one container image: https://github.com/mudler/LocalAI/issues/1855
- Parallel function calling: https://github.com/mudler/LocalAI/pull/1726 / Tools API support: https://github.com/mudler/LocalAI/pull/1715
- Upload file API: https://github.com/mudler/LocalAI/pull/1703
- ROCm container images: https://github.com/mudler/LocalAI/pull/1595 / Intel GPU support (sycl, transformers, diffusers): https://github.com/mudler/LocalAI/issues/1653
- Mamba support: https://github.com/mudler/LocalAI/pull/1589
- Start and share models with config file: https://github.com/mudler/LocalAI/pull/1522
- 🐸 Coqui: https://github.com/mudler/LocalAI/pull/1489
- Img2vid https://github.com/mudler/LocalAI/pull/1442
<table>
<tr>
<td width="50%" valign="top">
<a href="https://github.com/mudler/LocalAGI">
<img src="https://raw.githubusercontent.com/mudler/LocalAGI/refs/heads/main/webui/react-ui/public/logo_2.png" width="300" alt="LocalAGI Logo">
</a>
</td>
<td width="50%" valign="top">
<h3><a href="https://github.com/mudler/LocalAGI">LocalAGI</a></h3>
<p>A powerful Local AI agent management platform that serves as a drop-in replacement for OpenAI's Responses API, enhanced with advanced agentic capabilities.</p>
</td>
</tr>
<tr>
<td width="50%" valign="top">
<a href="https://github.com/mudler/LocalRecall">
<img src="https://raw.githubusercontent.com/mudler/LocalRecall/refs/heads/main/static/localrecall_horizontal.png" width="300" alt="LocalRecall Logo">
</a>
</td>
<td width="50%" valign="top">
<h3><a href="https://github.com/mudler/LocalRecall">LocalRecall</a></h3>
<p>A REST-ful API and knowledge base management system that provides persistent memory and storage capabilities for AI agents.</p>
</td>
</tr>
</table>
Hot topics (looking for contributors):
- Backends v2: https://github.com/mudler/LocalAI/issues/1126
- Improving UX v2: https://github.com/mudler/LocalAI/issues/1373
- Assistant API: https://github.com/mudler/LocalAI/issues/1273
- Moderation endpoint: https://github.com/mudler/LocalAI/issues/999
- Vulkan: https://github.com/mudler/LocalAI/issues/1647
## Screenshots
If you want to help and contribute, issues up for grabs: https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22up+for+grabs%22
## 💻 [Getting started](https://localai.io/basics/getting_started/index.html)
| Talk Interface | Generate Audio |
| --- | --- |
| ![Screenshot 2025-03-31 at 12-01-36 LocalAI - Talk](./docs/assets/images/screenshots/screenshot_tts.png) | ![Screenshot 2025-03-31 at 12-01-29 LocalAI - Generate audio with voice-en-us-ryan-low](./docs/assets/images/screenshots/screenshot_tts.png) |
For a detailed step-by-step introduction, refer to the [Getting Started](https://localai.io/basics/getting_started/index.html) guide.
| Models Overview | Generate Images |
| --- | --- |
| ![Screenshot 2025-03-31 at 12-01-20 LocalAI - Models](./docs/assets/images/screenshots/screenshot_gallery.png) | ![Screenshot 2025-03-31 at 12-31-41 LocalAI - Generate images with flux 1-dev](./docs/assets/images/screenshots/screenshot_image.png) |
| Chat Interface | Home |
| --- | --- |
| ![Screenshot 2025-03-31 at 11-57-44 LocalAI - Chat with localai-functioncall-qwen2 5-7b-v0 5](./docs/assets/images/screenshots/screenshot_chat.png) | ![Screenshot 2025-03-31 at 11-57-23 LocalAI API - c2a39e3 (c2a39e3639227cfd94ffffe9f5691239acc275a8)](./docs/assets/images/screenshots/screenshot_home.png) |
| Login | Swarm |
| --- | --- |
|![Screenshot 2025-03-31 at 12-09-59 ](./docs/assets/images/screenshots/screenshot_login.png) | ![Screenshot 2025-03-31 at 12-10-39 LocalAI - P2P dashboard](./docs/assets/images/screenshots/screenshot_p2p.png) |
## 💻 Quickstart
Run the installer script:
For those in a hurry, here's a straightforward one-liner to launch a LocalAI AIO(All-in-one) Image using `docker`:
```bash
# Basic installation
curl https://localai.io/install.sh | sh
```
For more installation options, see [Installer Options](https://localai.io/docs/advanced/installer/).
Or run with docker:
### CPU only image:
```bash
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest
```
### NVIDIA GPU Images:
```bash
# CUDA 12.0 with core features
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-12
# CUDA 12.0 with extra Python dependencies
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-12-extras
# CUDA 11.7 with core features
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-11
# CUDA 11.7 with extra Python dependencies
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-11-extras
# NVIDIA Jetson (L4T) ARM64
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-nvidia-l4t-arm64
```
### AMD GPU Images (ROCm):
```bash
# ROCm with core features
docker run -ti --name local-ai -p 8080:8080 --device=/dev/kfd --device=/dev/dri --group-add=video localai/localai:latest-gpu-hipblas
# ROCm with extra Python dependencies
docker run -ti --name local-ai -p 8080:8080 --device=/dev/kfd --device=/dev/dri --group-add=video localai/localai:latest-gpu-hipblas-extras
```
### Intel GPU Images (oneAPI):
```bash
# Intel GPU with FP16 support
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-gpu-intel-f16
# Intel GPU with FP16 support and extra dependencies
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-gpu-intel-f16-extras
# Intel GPU with FP32 support
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-gpu-intel-f32
# Intel GPU with FP32 support and extra dependencies
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-gpu-intel-f32-extras
```
### Vulkan GPU Images:
```bash
# Vulkan with core features
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-gpu-vulkan
```
### AIO Images (pre-downloaded models):
```bash
# CPU version
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-cpu
# NVIDIA CUDA 12 version
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-12
# NVIDIA CUDA 11 version
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-11
# Intel GPU version
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-gpu-intel-f16
# AMD GPU version
docker run -ti --name local-ai -p 8080:8080 --device=/dev/kfd --device=/dev/dri --group-add=video localai/localai:latest-aio-gpu-hipblas
# or, if you have an Nvidia GPU:
# docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-12
```
For more information about the AIO images and pre-downloaded models, see [Container Documentation](https://localai.io/basics/container/).
To load models:
```bash
# From the model gallery (see available models with `local-ai models list`, in the WebUI from the model tab, or visiting https://models.localai.io)
local-ai run llama-3.2-1b-instruct:q4_k_m
# Start LocalAI with the phi-2 model directly from huggingface
local-ai run huggingface://TheBloke/phi-2-GGUF/phi-2.Q8_0.gguf
# Install and run a model from the Ollama OCI registry
local-ai run ollama://gemma:2b
# Run a model from a configuration file
local-ai run https://gist.githubusercontent.com/.../phi-2.yaml
# Install and run a model from a standard OCI registry (e.g., Docker Hub)
local-ai run oci://localai/phi-2:latest
```
For more information, see [💻 Getting started](https://localai.io/basics/getting_started/index.html)
## 📰 Latest project news
- Apr 2025: [LocalAGI](https://github.com/mudler/LocalAGI) and [LocalRecall](https://github.com/mudler/LocalRecall) join the LocalAI family stack.
- Apr 2025: WebUI overhaul, AIO images updates
- Feb 2025: Backend cleanup, Breaking changes, new backends (kokoro, OutelTTS, faster-whisper), Nvidia L4T images
- Jan 2025: LocalAI model release: https://huggingface.co/mudler/LocalAI-functioncall-phi-4-v0.3, SANA support in diffusers: https://github.com/mudler/LocalAI/pull/4603
- Dec 2024: stablediffusion.cpp backend (ggml) added ( https://github.com/mudler/LocalAI/pull/4289 )
- Nov 2024: Bark.cpp backend added ( https://github.com/mudler/LocalAI/pull/4287 )
- Nov 2024: Voice activity detection models (**VAD**) added to the API: https://github.com/mudler/LocalAI/pull/4204
- Oct 2024: examples moved to [LocalAI-examples](https://github.com/mudler/LocalAI-examples)
- Aug 2024: 🆕 FLUX-1, [P2P Explorer](https://explorer.localai.io)
- July 2024: 🔥🔥 🆕 P2P Dashboard, LocalAI Federated mode and AI Swarms: https://github.com/mudler/LocalAI/pull/2723. P2P Global community pools: https://github.com/mudler/LocalAI/issues/3113
- May 2024: 🔥🔥 Decentralized P2P llama.cpp: https://github.com/mudler/LocalAI/pull/2343 (peer2peer llama.cpp!) 👉 Docs https://localai.io/features/distribute/
- May 2024: 🔥🔥 Distributed inferencing: https://github.com/mudler/LocalAI/pull/2324
- April 2024: Reranker API: https://github.com/mudler/LocalAI/pull/2121
Roadmap items: [List of issues](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
## 🚀 [Features](https://localai.io/features/)
- 📖 [Text generation with GPTs](https://localai.io/features/text-generation/) (`llama.cpp`, `transformers`, `vllm` ... [:book: and more](https://localai.io/model-compatibility/index.html#model-compatibility-table))
- 📖 [Text generation with GPTs](https://localai.io/features/text-generation/) (`llama.cpp`, `gpt4all.cpp`, ... [:book: and more](https://localai.io/model-compatibility/index.html#model-compatibility-table))
- 🗣 [Text to Audio](https://localai.io/features/text-to-audio/)
- 🔈 [Audio to Text](https://localai.io/features/audio-to-text/) (Audio transcription with `whisper.cpp`)
- 🎨 [Image generation](https://localai.io/features/image-generation)
- 🔥 [OpenAI-alike tools API](https://localai.io/features/openai-functions/)
- 🎨 [Image generation with stable diffusion](https://localai.io/features/image-generation)
- 🔥 [OpenAI functions](https://localai.io/features/openai-functions/) 🆕
- 🧠 [Embeddings generation for vector databases](https://localai.io/features/embeddings/)
- ✍️ [Constrained grammars](https://localai.io/features/constrained_grammars/)
- 🖼️ [Download Models directly from Huggingface ](https://localai.io/models/)
- 🥽 [Vision API](https://localai.io/features/gpt-vision/)
- 📈 [Reranker API](https://localai.io/features/reranker/)
- 🆕🖧 [P2P Inferencing](https://localai.io/features/distribute/)
- [Agentic capabilities](https://github.com/mudler/LocalAGI)
- 🔊 Voice activity detection (Silero-VAD support)
- 🌍 Integrated WebUI!
- 🆕 [Vision API](https://localai.io/features/gpt-vision/)
## 💻 Usage
Check out the [Getting started](https://localai.io/basics/getting_started/index.html) section in our documentation.
### 🔗 Community and integrations
@ -252,7 +107,6 @@ Build and deploy custom containers:
WebUIs:
- https://github.com/Jirubizu/localai-admin
- https://github.com/go-skynet/LocalAI-frontend
- QA-Pilot(An interactive chat project that leverages LocalAI LLMs for rapid understanding and navigation of GitHub code repository) https://github.com/reid41/QA-Pilot
Model galleries
- https://github.com/go-skynet/model-gallery
@ -260,24 +114,17 @@ Model galleries
Other:
- Helm chart https://github.com/go-skynet/helm-charts
- VSCode extension https://github.com/badgooooor/localai-vscode-plugin
- Langchain: https://python.langchain.com/docs/integrations/providers/localai/
- Terminal utility https://github.com/djcopley/ShellOracle
- Local Smart assistant https://github.com/mudler/LocalAGI
- Home Assistant https://github.com/sammcj/homeassistant-localai / https://github.com/drndos/hass-openai-custom-conversation / https://github.com/valentinfrlch/ha-gpt4vision
- Home Assistant https://github.com/sammcj/homeassistant-localai / https://github.com/drndos/hass-openai-custom-conversation
- Discord bot https://github.com/mudler/LocalAGI/tree/main/examples/discord
- Slack bot https://github.com/mudler/LocalAGI/tree/main/examples/slack
- Shell-Pilot(Interact with LLM using LocalAI models via pure shell scripts on your Linux or MacOS system) https://github.com/reid41/shell-pilot
- Telegram bot https://github.com/mudler/LocalAI/tree/master/examples/telegram-bot
- Another Telegram Bot https://github.com/JackBekket/Hellper
- Auto-documentation https://github.com/JackBekket/Reflexia
- Github bot which answer on issues, with code and documentation as context https://github.com/JackBekket/GitHelper
- Github Actions: https://github.com/marketplace/actions/start-localai
- Examples: https://github.com/mudler/LocalAI/tree/master/examples/
### 🔗 Resources
- [LLM finetuning guide](https://localai.io/docs/advanced/fine-tuning/)
- 🆕 New! [LLM finetuning guide](https://localai.io/docs/advanced/fine-tuning/)
- [How to build locally](https://localai.io/basics/build/index.html)
- [How to install in Kubernetes](https://localai.io/basics/getting_started/index.html#run-localai-in-kubernetes)
- [Projects integrating LocalAI](https://localai.io/docs/integrations/)
@ -285,9 +132,7 @@ Other:
## :book: 🎥 [Media, Blogs, Social](https://localai.io/basics/news/#media-blogs-social)
- [Run Visual studio code with LocalAI (SUSE)](https://www.suse.com/c/running-ai-locally/)
- 🆕 [Run LocalAI on Jetson Nano Devkit](https://mudler.pm/posts/local-ai-jetson-nano-devkit/)
- [Run LocalAI on AWS EKS with Pulumi](https://www.pulumi.com/blog/low-code-llm-apps-with-local-ai-flowise-and-pulumi/)
- [Run LocalAI on AWS EKS with Pulumi](https://www.pulumi.com/ai/answers/tiZMDoZzZV6TLxgDXNBnFE/deploying-helm-charts-on-aws-eks)
- [Run LocalAI on AWS](https://staleks.hashnode.dev/installing-localai-on-aws-ec2-instance)
- [Create a slackbot for teams and OSS projects that answer to documentation](https://mudler.pm/posts/smart-slackbot-for-teams/)
- [LocalAI meets k8sgpt](https://www.youtube.com/watch?v=PKrDNuJ_dfE)
@ -314,16 +159,17 @@ If you utilize this repository, data in a downstream project, please consider ci
Support the project by becoming [a backer or sponsor](https://github.com/sponsors/mudler). Your logo will show up here with a link to your website.
A huge thank you to our generous sponsors who support this project covering CI expenses, and our [Sponsor list](https://github.com/sponsors/mudler):
A huge thank you to our generous sponsors who support this project:
<p align="center">
<a href="https://www.spectrocloud.com/" target="blank">
<img height="200" src="https://github.com/user-attachments/assets/72eab1dd-8b93-4fc0-9ade-84db49f24962">
</a>
<a href="https://www.premai.io/" target="blank">
<img height="200" src="https://github.com/mudler/LocalAI/assets/2420543/42e4ca83-661e-4f79-8e46-ae43689683d6"> <br>
</a>
</p>
| ![Spectro Cloud logo_600x600px_transparent bg](https://github.com/go-skynet/LocalAI/assets/2420543/68a6f3cb-8a65-4a4d-99b5-6417a8905512) |
|:-----------------------------------------------:|
| [Spectro Cloud](https://www.spectrocloud.com/) |
| Spectro Cloud kindly supports LocalAI by providing GPU and computing resources to run tests on lamdalabs! |
And a huge shout-out to individuals sponsoring the project by donating hardware or backing the project.
- [Sponsor list](https://github.com/sponsors/mudler)
- JDAM00 (donating HW for the CI)
## 🌟 Star history
@ -333,7 +179,7 @@ A huge thank you to our generous sponsors who support this project covering CI e
LocalAI is a community-driven project created by [Ettore Di Giacinto](https://github.com/mudler/).
MIT - Author Ettore Di Giacinto <mudler@localai.io>
MIT - Author Ettore Di Giacinto
## 🙇 Acknowledgements
@ -345,6 +191,7 @@ LocalAI couldn't have been built without the help of great software already avai
- https://github.com/antimatter15/alpaca.cpp
- https://github.com/EdVince/Stable-Diffusion-NCNN
- https://github.com/ggerganov/whisper.cpp
- https://github.com/saharNooby/rwkv.cpp
- https://github.com/rhasspy/piper
## 🤗 Contributors

View file

@ -1,7 +1,7 @@
embeddings: true
name: text-embedding-ada-002
backend: bert-embeddings
parameters:
model: huggingface://bartowski/granite-embedding-107m-multilingual-GGUF/granite-embedding-107m-multilingual-f16.gguf
model: huggingface://mudler/all-MiniLM-L6-v2/ggml-model-q4_0.bin
usage: |
You can test this model with curl like this:

View file

@ -1,17 +1,56 @@
name: stablediffusion
backend: stablediffusion-ggml
cfg_scale: 4.5
options:
- sampler:euler
backend: stablediffusion
parameters:
model: stable-diffusion-v1-5-pruned-emaonly-Q4_0.gguf
step: 25
model: stablediffusion_assets
license: "BSD-3"
urls:
- https://github.com/EdVince/Stable-Diffusion-NCNN
- https://github.com/EdVince/Stable-Diffusion-NCNN/blob/main/LICENSE
description: |
Stable Diffusion in NCNN with c++, supported txt2img and img2img
download_files:
- filename: "stable-diffusion-v1-5-pruned-emaonly-Q4_0.gguf"
sha256: "b8944e9fe0b69b36ae1b5bb0185b3a7b8ef14347fe0fa9af6c64c4829022261f"
uri: "huggingface://second-state/stable-diffusion-v1-5-GGUF/stable-diffusion-v1-5-pruned-emaonly-Q4_0.gguf"
- filename: "stablediffusion_assets/AutoencoderKL-256-256-fp16-opt.param"
sha256: "18ca4b66685e21406bcf64c484b3b680b4949900415536d599cc876579c85c82"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-256-256-fp16-opt.param"
- filename: "stablediffusion_assets/AutoencoderKL-512-512-fp16-opt.param"
sha256: "cf45f63aacf3dbbab0f59ed92a6f2c14d9a1801314631cd3abe91e3c85639a20"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-512-512-fp16-opt.param"
- filename: "stablediffusion_assets/AutoencoderKL-base-fp16.param"
sha256: "0254a056dce61b0c27dc9ec1b78b53bcf55315c540f55f051eb841aa992701ba"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-base-fp16.param"
- filename: "stablediffusion_assets/AutoencoderKL-encoder-512-512-fp16.bin"
sha256: "ddcb79a9951b9f91e05e087739ed69da2c1c4ae30ba4168cce350b49d617c9fa"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/AutoencoderKL-encoder-512-512-fp16.bin"
- filename: "stablediffusion_assets/AutoencoderKL-fp16.bin"
sha256: "f02e71f80e70252734724bbfaed5c4ddd3a8ed7e61bb2175ff5f53099f0e35dd"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/AutoencoderKL-fp16.bin"
- filename: "stablediffusion_assets/FrozenCLIPEmbedder-fp16.bin"
sha256: "1c9a12f4e1dd1b295a388045f7f28a2352a4d70c3dc96a542189a3dd7051fdd6"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/FrozenCLIPEmbedder-fp16.bin"
- filename: "stablediffusion_assets/FrozenCLIPEmbedder-fp16.param"
sha256: "471afbe678dd1fd3fe764ef9c6eccaccb0a7d7e601f27b462aa926b20eb368c9"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/FrozenCLIPEmbedder-fp16.param"
- filename: "stablediffusion_assets/log_sigmas.bin"
sha256: "a2089f8aa4c61f9c200feaec541ab3f5c94233b28deb6d5e8bcd974fa79b68ac"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/raw/main/x86/linux/assets/log_sigmas.bin"
- filename: "stablediffusion_assets/UNetModel-256-256-MHA-fp16-opt.param"
sha256: "a58c380229f09491776df837b7aa7adffc0a87821dc4708b34535da2e36e3da1"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-256-256-MHA-fp16-opt.param"
- filename: "stablediffusion_assets/UNetModel-512-512-MHA-fp16-opt.param"
sha256: "f12034067062827bd7f43d1d21888d1f03905401acf6c6eea22be23c259636fa"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-512-512-MHA-fp16-opt.param"
- filename: "stablediffusion_assets/UNetModel-base-MHA-fp16.param"
sha256: "696f6975de49f4325b53ce32aff81861a6d6c07cd9ce3f0aae2cc405350af38d"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-base-MHA-fp16.param"
- filename: "stablediffusion_assets/UNetModel-MHA-fp16.bin"
sha256: "d618918d011bfc1f644c0f2a33bf84931bd53b28a98492b0a8ed6f3a818852c3"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/UNetModel-MHA-fp16.bin"
- filename: "stablediffusion_assets/vocab.txt"
sha256: "e30e57b6f1e47616982ef898d8922be24e535b4fa3d0110477b3a6f02ebbae7d"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/vocab.txt"
usage: |
curl http://localhost:8080/v1/images/generations \

View file

@ -1,27 +0,0 @@
name: jina-reranker-v1-base-en
backend: rerankers
parameters:
model: cross-encoder
usage: |
You can test this model with curl like this:
curl http://localhost:8080/v1/rerank \
-H "Content-Type: application/json" \
-d '{
"model": "jina-reranker-v1-base-en",
"query": "Organic skincare products for sensitive skin",
"documents": [
"Eco-friendly kitchenware for modern homes",
"Biodegradable cleaning supplies for eco-conscious consumers",
"Organic cotton baby clothes for sensitive skin",
"Natural organic skincare range for sensitive skin",
"Tech gadgets for smart homes: 2024 edition",
"Sustainable gardening tools and compost solutions",
"Sensitive skin-friendly facial cleansers and toners",
"Organic food wraps and storage solutions",
"All-natural pet food for dogs with allergies",
"Yoga mats made from recycled materials"
],
"top_n": 3
}'

View file

@ -1,57 +1,53 @@
context_size: 8192
f16: true
function:
grammar:
no_mixed_free_string: true
schema_type: llama3.1 # or JSON is supported too (json)
response_regex:
- <function=(?P<name>\w+)>(?P<arguments>.*)</function>
mmap: true
name: gpt-4
mmap: true
parameters:
model: Hermes-3-Llama-3.2-3B-Q4_K_M.gguf
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q2_K.gguf
template:
chat_message: |
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}<tool_call>{{end}}
{{- if eq .RoleName "tool" }}<tool_result>{{end }}
{{- if .Content}}
{{.Content}}
{{- end }}
{{- if .FunctionCall}}{{toJson .FunctionCall}}{{end }}
{{- if .FunctionCall }}</tool_call>{{end }}
{{- if eq .RoleName "tool" }}</tool_result>{{end }}
<|im_end|>
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
function: |
<|im_start|>system
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
</tools>
Use the following pydantic model json schema for each tool call you will make:
{'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{'arguments': <args-dict>, 'name': <function-name>}
</tool_call>
<|im_end|>
{{.Input -}}
<|im_start|>assistant
<tool_call>
chat: |
{{.Input -}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
f16: true
stopwords:
- <|im_end|>
- <dummy32000>
- <|eot_id|>
- <|end_of_text|>
template:
chat: |
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>
{{.Input }}
<|start_header_id|>assistant<|end_header_id|>
chat_message: |
<|start_header_id|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}<|end_header_id|>
{{ if .FunctionCall -}}
{{ else if eq .RoleName "tool" -}}
The Function was executed and the response was:
{{ end -}}
{{ if .Content -}}
{{.Content -}}
{{ else if .FunctionCall -}}
{{ range .FunctionCall }}
[{{.FunctionCall.Name}}({{.FunctionCall.Arguments}})]
{{ end }}
{{ end -}}
<|eot_id|>
completion: |
{{.Input}}
function: |
<|start_header_id|>system<|end_header_id|>
You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the functions can be used, point it out. If the given question lacks the parameters required by the function, also point it out. You should only return the function call in tools call sections.
If you decide to invoke any of the function(s), you MUST put it in the format as follows:
[func_name1(params_name1=params_value1,params_name2=params_value2,...),func_name2(params_name1=params_value1,params_name2=params_value2,...)]
You SHOULD NOT include any other text in the response.
Here is a list of functions in JSON format that you can invoke.
{{toJson .Functions}}
<|eot_id|><|start_header_id|>user<|end_header_id|>
{{.Input}}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
download_files:
- filename: Hermes-3-Llama-3.2-3B-Q4_K_M.gguf
sha256: 2e220a14ba4328fee38cf36c2c068261560f999fadb5725ce5c6d977cb5126b5
uri: huggingface://bartowski/Hermes-3-Llama-3.2-3B-GGUF/Hermes-3-Llama-3.2-3B-Q4_K_M.gguf
- "\n</tool_call>"
- "\n\n\n"
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'

View file

@ -1,8 +0,0 @@
backend: silero-vad
name: silero-vad
parameters:
model: silero-vad.onnx
download_files:
- filename: silero-vad.onnx
uri: https://huggingface.co/onnx-community/silero-vad/resolve/main/onnx/model.onnx
sha256: a4a068cd6cf1ea8355b84327595838ca748ec29a25bc91fc82e6c299ccdc5808

View file

@ -1,49 +1,31 @@
backend: llama-cpp
context_size: 4096
f16: true
mmap: true
mmproj: minicpm-v-2_6-mmproj-f16.gguf
name: gpt-4o
name: gpt-4-vision-preview
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: bakllava-mmproj.gguf
parameters:
model: minicpm-v-2_6-Q4_K_M.gguf
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
- <|endoftext|>
model: bakllava.gguf
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
completion: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
function: |
<|im_start|>system
You are a function calling AI model. You are provided with functions to execute. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
For each function call return a json object with function name and arguments
<|im_end|>
{{.Input -}}
<|im_start|>assistant
ASSISTANT:
download_files:
- filename: minicpm-v-2_6-Q4_K_M.gguf
sha256: 3a4078d53b46f22989adbf998ce5a3fd090b6541f112d7e936eb4204a04100b1
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/ggml-model-Q4_K_M.gguf
- filename: minicpm-v-2_6-mmproj-f16.gguf
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/mmproj-model-f16.gguf
sha256: 4485f68a0f1aa404c391e788ea88ea653c100d8e98fe572698f701e5809711fd
- filename: bakllava.gguf
uri: huggingface://mys/ggml_bakllava-1/ggml-model-q4_k.gguf
- filename: bakllava-mmproj.gguf
uri: huggingface://mys/ggml_bakllava-1/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View file

@ -129,7 +129,7 @@ detect_gpu
detect_gpu_size
PROFILE="${PROFILE:-$GPU_SIZE}" # default to cpu
export MODELS="${MODELS:-/aio/${PROFILE}/embeddings.yaml,/aio/${PROFILE}/rerank.yaml,/aio/${PROFILE}/text-to-speech.yaml,/aio/${PROFILE}/image-gen.yaml,/aio/${PROFILE}/text-to-text.yaml,/aio/${PROFILE}/speech-to-text.yaml,/aio/${PROFILE}/vad.yaml,/aio/${PROFILE}/vision.yaml}"
export MODELS="${MODELS:-/aio/${PROFILE}/embeddings.yaml,/aio/${PROFILE}/text-to-speech.yaml,/aio/${PROFILE}/image-gen.yaml,/aio/${PROFILE}/text-to-text.yaml,/aio/${PROFILE}/speech-to-text.yaml,/aio/${PROFILE}/vision.yaml}"
check_vars

View file

@ -1,7 +1,7 @@
embeddings: true
name: text-embedding-ada-002
backend: sentencetransformers
parameters:
model: huggingface://bartowski/granite-embedding-107m-multilingual-GGUF/granite-embedding-107m-multilingual-f16.gguf
model: all-MiniLM-L6-v2
usage: |
You can test this model with curl like this:

View file

@ -1,27 +0,0 @@
name: jina-reranker-v1-base-en
backend: rerankers
parameters:
model: cross-encoder
usage: |
You can test this model with curl like this:
curl http://localhost:8080/v1/rerank \
-H "Content-Type: application/json" \
-d '{
"model": "jina-reranker-v1-base-en",
"query": "Organic skincare products for sensitive skin",
"documents": [
"Eco-friendly kitchenware for modern homes",
"Biodegradable cleaning supplies for eco-conscious consumers",
"Organic cotton baby clothes for sensitive skin",
"Natural organic skincare range for sensitive skin",
"Tech gadgets for smart homes: 2024 edition",
"Sustainable gardening tools and compost solutions",
"Sensitive skin-friendly facial cleansers and toners",
"Organic food wraps and storage solutions",
"All-natural pet food for dogs with allergies",
"Yoga mats made from recycled materials"
],
"top_n": 3
}'

View file

@ -1,53 +1,53 @@
context_size: 4096
f16: true
function:
capture_llm_results:
- (?s)<Thought>(.*?)</Thought>
grammar:
properties_order: name,arguments
json_regex_match:
- (?s)<Output>(.*?)</Output>
replace_llm_results:
- key: (?s)<Thought>(.*?)</Thought>
value: ""
mmap: true
name: gpt-4
mmap: true
parameters:
model: localai-functioncall-qwen2.5-7b-v0.5-q4_k_m.gguf
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q6_K.gguf
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}<tool_call>{{end}}
{{- if eq .RoleName "tool" }}<tool_result>{{end }}
{{- if .Content}}
{{.Content}}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
completion: |
{{.Input}}
{{- end }}
{{- if .FunctionCall}}{{toJson .FunctionCall}}{{end }}
{{- if .FunctionCall }}</tool_call>{{end }}
{{- if eq .RoleName "tool" }}</tool_result>{{end }}
<|im_end|>
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
function: |
<|im_start|>system
You are an AI assistant that executes function calls, and these are the tools at your disposal:
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
</tools>
Use the following pydantic model json schema for each tool call you will make:
{'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{'arguments': <args-dict>, 'name': <function-name>}
</tool_call>
<|im_end|>
{{.Input -}}
<|im_start|>assistant
download_files:
- filename: localai-functioncall-qwen2.5-7b-v0.5-q4_k_m.gguf
sha256: 4e7b7fe1d54b881f1ef90799219dc6cc285d29db24f559c8998d1addb35713d4
uri: huggingface://mudler/LocalAI-functioncall-qwen2.5-7b-v0.5-Q4_K_M-GGUF/localai-functioncall-qwen2.5-7b-v0.5-q4_k_m.gguf
<tool_call>
chat: |
{{.Input -}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
f16: true
stopwords:
- <|im_end|>
- <dummy32000>
- "\n</tool_call>"
- "\n\n\n"
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'

View file

@ -1,8 +0,0 @@
backend: silero-vad
name: silero-vad
parameters:
model: silero-vad.onnx
download_files:
- filename: silero-vad.onnx
uri: https://huggingface.co/onnx-community/silero-vad/resolve/main/onnx/model.onnx
sha256: a4a068cd6cf1ea8355b84327595838ca748ec29a25bc91fc82e6c299ccdc5808

View file

@ -1,49 +1,35 @@
backend: llama-cpp
context_size: 4096
f16: true
mmap: true
mmproj: minicpm-v-2_6-mmproj-f16.gguf
name: gpt-4o
name: gpt-4-vision-preview
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: llava-v1.6-7b-mmproj-f16.gguf
parameters:
model: minicpm-v-2_6-Q4_K_M.gguf
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
- <|endoftext|>
model: llava-v1.6-mistral-7b.Q5_K_M.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
seed: -1
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
completion: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
function: |
<|im_start|>system
You are a function calling AI model. You are provided with functions to execute. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
For each function call return a json object with function name and arguments
<|im_end|>
{{.Input -}}
<|im_start|>assistant
ASSISTANT:
download_files:
- filename: minicpm-v-2_6-Q4_K_M.gguf
sha256: 3a4078d53b46f22989adbf998ce5a3fd090b6541f112d7e936eb4204a04100b1
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/ggml-model-Q4_K_M.gguf
- filename: minicpm-v-2_6-mmproj-f16.gguf
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/mmproj-model-f16.gguf
sha256: 4485f68a0f1aa404c391e788ea88ea653c100d8e98fe572698f701e5809711fd
- filename: llava-v1.6-mistral-7b.Q5_K_M.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/llava-v1.6-mistral-7b.Q5_K_M.gguf
- filename: llava-v1.6-7b-mmproj-f16.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View file

@ -1,7 +1,7 @@
embeddings: true
name: text-embedding-ada-002
backend: sentencetransformers
parameters:
model: huggingface://bartowski/granite-embedding-107m-multilingual-GGUF/granite-embedding-107m-multilingual-f16.gguf
model: all-MiniLM-L6-v2
usage: |
You can test this model with curl like this:

View file

@ -1,6 +1,6 @@
name: stablediffusion
parameters:
model: Lykon/dreamshaper-8
model: runwayml/stable-diffusion-v1-5
backend: diffusers
step: 25
f16: true

View file

@ -1,27 +0,0 @@
name: jina-reranker-v1-base-en
backend: rerankers
parameters:
model: cross-encoder
usage: |
You can test this model with curl like this:
curl http://localhost:8080/v1/rerank \
-H "Content-Type: application/json" \
-d '{
"model": "jina-reranker-v1-base-en",
"query": "Organic skincare products for sensitive skin",
"documents": [
"Eco-friendly kitchenware for modern homes",
"Biodegradable cleaning supplies for eco-conscious consumers",
"Organic cotton baby clothes for sensitive skin",
"Natural organic skincare range for sensitive skin",
"Tech gadgets for smart homes: 2024 edition",
"Sustainable gardening tools and compost solutions",
"Sensitive skin-friendly facial cleansers and toners",
"Organic food wraps and storage solutions",
"All-natural pet food for dogs with allergies",
"Yoga mats made from recycled materials"
],
"top_n": 3
}'

View file

@ -1,53 +1,53 @@
context_size: 4096
f16: true
function:
capture_llm_results:
- (?s)<Thought>(.*?)</Thought>
grammar:
properties_order: name,arguments
json_regex_match:
- (?s)<Output>(.*?)</Output>
replace_llm_results:
- key: (?s)<Thought>(.*?)</Thought>
value: ""
mmap: true
name: gpt-4
mmap: false
f16: false
parameters:
model: localai-functioncall-qwen2.5-7b-v0.5-q4_k_m.gguf
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q6_K.gguf
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}<tool_call>{{end}}
{{- if eq .RoleName "tool" }}<tool_result>{{end }}
{{- if .Content}}
{{.Content}}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
completion: |
{{.Input}}
{{- end }}
{{- if .FunctionCall}}{{toJson .FunctionCall}}{{end }}
{{- if .FunctionCall }}</tool_call>{{end }}
{{- if eq .RoleName "tool" }}</tool_result>{{end }}
<|im_end|>
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
function: |
<|im_start|>system
You are an AI assistant that executes function calls, and these are the tools at your disposal:
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
</tools>
Use the following pydantic model json schema for each tool call you will make:
{'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{'arguments': <args-dict>, 'name': <function-name>}
</tool_call>
<|im_end|>
{{.Input -}}
<|im_start|>assistant
download_files:
- filename: localai-functioncall-phi-4-v0.3-q4_k_m.gguf
sha256: 23fee048ded2a6e2e1a7b6bbefa6cbf83068f194caa9552aecbaa00fec8a16d5
uri: huggingface://mudler/LocalAI-functioncall-phi-4-v0.3-Q4_K_M-GGUF/localai-functioncall-phi-4-v0.3-q4_k_m.gguf
<tool_call>
chat: |
{{.Input -}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
stopwords:
- <|im_end|>
- "\n</tool_call>"
- <dummy32000>
- "\n\n\n"
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'

View file

@ -1,8 +0,0 @@
backend: silero-vad
name: silero-vad
parameters:
model: silero-vad.onnx
download_files:
- filename: silero-vad.onnx
uri: https://huggingface.co/onnx-community/silero-vad/resolve/main/onnx/model.onnx
sha256: a4a068cd6cf1ea8355b84327595838ca748ec29a25bc91fc82e6c299ccdc5808

View file

@ -1,50 +1,35 @@
backend: llama-cpp
context_size: 4096
f16: true
mmap: true
mmproj: minicpm-v-2_6-mmproj-f16.gguf
name: gpt-4o
mmap: false
f16: false
name: gpt-4-vision-preview
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: llava-v1.6-7b-mmproj-f16.gguf
parameters:
model: minicpm-v-2_6-Q4_K_M.gguf
stopwords:
- <|im_end|>
- <dummy32000>
- </s>
- <|endoftext|>
model: llava-v1.6-mistral-7b.Q5_K_M.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
seed: -1
template:
chat: |
{{.Input -}}
<|im_start|>assistant
chat_message: |
<|im_start|>{{ .RoleName }}
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}<|im_end|>
completion: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
function: |
<|im_start|>system
You are a function calling AI model. You are provided with functions to execute. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
For each function call return a json object with function name and arguments
<|im_end|>
{{.Input -}}
<|im_start|>assistant
ASSISTANT:
download_files:
- filename: minicpm-v-2_6-Q4_K_M.gguf
sha256: 3a4078d53b46f22989adbf998ce5a3fd090b6541f112d7e936eb4204a04100b1
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/ggml-model-Q4_K_M.gguf
- filename: minicpm-v-2_6-mmproj-f16.gguf
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/mmproj-model-f16.gguf
sha256: 4485f68a0f1aa404c391e788ea88ea653c100d8e98fe572698f701e5809711fd
- filename: llava-v1.6-mistral-7b.Q5_K_M.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/llava-v1.6-mistral-7b.Q5_K_M.gguf
- filename: llava-v1.6-7b-mmproj-f16.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View file

@ -1,15 +1,6 @@
package main
import (
rice "github.com/GeertJohan/go.rice"
)
import "embed"
var backendAssets *rice.Box
func init() {
var err error
backendAssets, err = rice.FindBox("backend-assets")
if err != nil {
panic(err)
}
}
//go:embed backend-assets/*
var backendAssets embed.FS

View file

@ -14,10 +14,8 @@ service Backend {
rpc PredictStream(PredictOptions) returns (stream Reply) {}
rpc Embedding(PredictOptions) returns (EmbeddingResult) {}
rpc GenerateImage(GenerateImageRequest) returns (Result) {}
rpc GenerateVideo(GenerateVideoRequest) returns (Result) {}
rpc AudioTranscription(TranscriptRequest) returns (TranscriptResult) {}
rpc TTS(TTSRequest) returns (Result) {}
rpc SoundGeneration(SoundGenerationRequest) returns (Result) {}
rpc TokenizeString(PredictOptions) returns (TokenizationResponse) {}
rpc Status(HealthMessage) returns (StatusResponse) {}
@ -25,45 +23,6 @@ service Backend {
rpc StoresDelete(StoresDeleteOptions) returns (Result) {}
rpc StoresGet(StoresGetOptions) returns (StoresGetResult) {}
rpc StoresFind(StoresFindOptions) returns (StoresFindResult) {}
rpc Rerank(RerankRequest) returns (RerankResult) {}
rpc GetMetrics(MetricsRequest) returns (MetricsResponse);
rpc VAD(VADRequest) returns (VADResponse) {}
}
// Define the empty request
message MetricsRequest {}
message MetricsResponse {
int32 slot_id = 1;
string prompt_json_for_slot = 2; // Stores the prompt as a JSON string.
float tokens_per_second = 3;
int32 tokens_generated = 4;
int32 prompt_tokens_processed = 5;
}
message RerankRequest {
string query = 1;
repeated string documents = 2;
int32 top_n = 3;
}
message RerankResult {
Usage usage = 1;
repeated DocumentResult results = 2;
}
message Usage {
int32 total_tokens = 1;
int32 prompt_tokens = 2;
}
message DocumentResult {
int32 index = 1;
string text = 2;
float relevance_score = 3;
}
message StoresKey {
@ -148,24 +107,11 @@ message PredictOptions {
string NegativePrompt = 40;
int32 NDraft = 41;
repeated string Images = 42;
bool UseTokenizerTemplate = 43;
repeated Message Messages = 44;
repeated string Videos = 45;
repeated string Audios = 46;
string CorrelationId = 47;
}
// The response message containing the result
message Reply {
bytes message = 1;
int32 tokens = 2;
int32 prompt_tokens = 3;
double timing_prompt_processing = 4;
double timing_token_generation = 5;
}
message GrammarTrigger {
string word = 1;
}
message ModelOptions {
@ -191,7 +137,11 @@ message ModelOptions {
int32 NGQA = 20;
string ModelFile = 21;
// AutoGPTQ
string Device = 22;
bool UseTriton = 23;
string ModelBaseName = 24;
bool UseFastTokenizer = 25;
// Diffusers
string PipelineType = 26;
@ -223,13 +173,6 @@ message ModelOptions {
bool EnforceEager = 52;
int32 SwapSpace = 53;
int32 MaxModelLen = 54;
int32 TensorParallelSize = 55;
string LoadFormat = 58;
bool DisableLogStatus = 66;
string DType = 67;
int32 LimitImagePerPrompt = 68;
int32 LimitVideoPerPrompt = 69;
int32 LimitAudioPerPrompt = 70;
string MMProj = 41;
@ -240,21 +183,6 @@ message ModelOptions {
float YarnBetaSlow = 47;
string Type = 49;
bool FlashAttention = 56;
bool NoKVOffload = 57;
string ModelPath = 59;
repeated string LoraAdapters = 60;
repeated float LoraScales = 61;
repeated string Options = 62;
string CacheTypeKey = 63;
string CacheTypeValue = 64;
repeated GrammarTrigger GrammarTriggers = 65;
}
message Result {
@ -270,7 +198,6 @@ message TranscriptRequest {
string dst = 2;
string language = 3;
uint32 threads = 4;
bool translate = 5;
}
message TranscriptResult {
@ -302,49 +229,11 @@ message GenerateImageRequest {
int32 CLIPSkip = 11;
}
message GenerateVideoRequest {
string prompt = 1;
string start_image = 2; // Path or base64 encoded image for the start frame
string end_image = 3; // Path or base64 encoded image for the end frame
int32 width = 4;
int32 height = 5;
int32 num_frames = 6; // Number of frames to generate
int32 fps = 7; // Frames per second
int32 seed = 8;
float cfg_scale = 9; // Classifier-free guidance scale
string dst = 10; // Output path for the generated video
}
message TTSRequest {
string text = 1;
string model = 2;
string dst = 3;
string voice = 4;
optional string language = 5;
}
message VADRequest {
repeated float audio = 1;
}
message VADSegment {
float start = 1;
float end = 2;
}
message VADResponse {
repeated VADSegment segments = 1;
}
message SoundGenerationRequest {
string text = 1;
string model = 2;
string dst = 3;
optional float duration = 4;
optional float temperature = 5;
optional bool sample = 6;
optional string src = 7;
optional int32 src_divisor = 8;
}
message TokenizationResponse {
@ -367,8 +256,3 @@ message StatusResponse {
State state = 1;
MemoryUsageData memory = 2;
}
message Message {
string role = 1;
string content = 2;
}

457
backend/backend_grpc.pb.go Normal file
View file

@ -0,0 +1,457 @@
// Code generated by protoc-gen-go-grpc. DO NOT EDIT.
// versions:
// - protoc-gen-go-grpc v1.2.0
// - protoc v4.23.4
// source: backend/backend.proto
package proto
import (
context "context"
grpc "google.golang.org/grpc"
codes "google.golang.org/grpc/codes"
status "google.golang.org/grpc/status"
)
// This is a compile-time assertion to ensure that this generated file
// is compatible with the grpc package it is being compiled against.
// Requires gRPC-Go v1.32.0 or later.
const _ = grpc.SupportPackageIsVersion7
// BackendClient is the client API for Backend service.
//
// For semantics around ctx use and closing/ending streaming RPCs, please refer to https://pkg.go.dev/google.golang.org/grpc/?tab=doc#ClientConn.NewStream.
type BackendClient interface {
Health(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*Reply, error)
Predict(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*Reply, error)
LoadModel(ctx context.Context, in *ModelOptions, opts ...grpc.CallOption) (*Result, error)
PredictStream(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (Backend_PredictStreamClient, error)
Embedding(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*EmbeddingResult, error)
GenerateImage(ctx context.Context, in *GenerateImageRequest, opts ...grpc.CallOption) (*Result, error)
AudioTranscription(ctx context.Context, in *TranscriptRequest, opts ...grpc.CallOption) (*TranscriptResult, error)
TTS(ctx context.Context, in *TTSRequest, opts ...grpc.CallOption) (*Result, error)
TokenizeString(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*TokenizationResponse, error)
Status(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*StatusResponse, error)
}
type backendClient struct {
cc grpc.ClientConnInterface
}
func NewBackendClient(cc grpc.ClientConnInterface) BackendClient {
return &backendClient{cc}
}
func (c *backendClient) Health(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*Reply, error) {
out := new(Reply)
err := c.cc.Invoke(ctx, "/backend.Backend/Health", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) Predict(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*Reply, error) {
out := new(Reply)
err := c.cc.Invoke(ctx, "/backend.Backend/Predict", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) LoadModel(ctx context.Context, in *ModelOptions, opts ...grpc.CallOption) (*Result, error) {
out := new(Result)
err := c.cc.Invoke(ctx, "/backend.Backend/LoadModel", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) PredictStream(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (Backend_PredictStreamClient, error) {
stream, err := c.cc.NewStream(ctx, &Backend_ServiceDesc.Streams[0], "/backend.Backend/PredictStream", opts...)
if err != nil {
return nil, err
}
x := &backendPredictStreamClient{stream}
if err := x.ClientStream.SendMsg(in); err != nil {
return nil, err
}
if err := x.ClientStream.CloseSend(); err != nil {
return nil, err
}
return x, nil
}
type Backend_PredictStreamClient interface {
Recv() (*Reply, error)
grpc.ClientStream
}
type backendPredictStreamClient struct {
grpc.ClientStream
}
func (x *backendPredictStreamClient) Recv() (*Reply, error) {
m := new(Reply)
if err := x.ClientStream.RecvMsg(m); err != nil {
return nil, err
}
return m, nil
}
func (c *backendClient) Embedding(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*EmbeddingResult, error) {
out := new(EmbeddingResult)
err := c.cc.Invoke(ctx, "/backend.Backend/Embedding", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) GenerateImage(ctx context.Context, in *GenerateImageRequest, opts ...grpc.CallOption) (*Result, error) {
out := new(Result)
err := c.cc.Invoke(ctx, "/backend.Backend/GenerateImage", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) AudioTranscription(ctx context.Context, in *TranscriptRequest, opts ...grpc.CallOption) (*TranscriptResult, error) {
out := new(TranscriptResult)
err := c.cc.Invoke(ctx, "/backend.Backend/AudioTranscription", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) TTS(ctx context.Context, in *TTSRequest, opts ...grpc.CallOption) (*Result, error) {
out := new(Result)
err := c.cc.Invoke(ctx, "/backend.Backend/TTS", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) TokenizeString(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*TokenizationResponse, error) {
out := new(TokenizationResponse)
err := c.cc.Invoke(ctx, "/backend.Backend/TokenizeString", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *backendClient) Status(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*StatusResponse, error) {
out := new(StatusResponse)
err := c.cc.Invoke(ctx, "/backend.Backend/Status", in, out, opts...)
if err != nil {
return nil, err
}
return out, nil
}
// BackendServer is the server API for Backend service.
// All implementations must embed UnimplementedBackendServer
// for forward compatibility
type BackendServer interface {
Health(context.Context, *HealthMessage) (*Reply, error)
Predict(context.Context, *PredictOptions) (*Reply, error)
LoadModel(context.Context, *ModelOptions) (*Result, error)
PredictStream(*PredictOptions, Backend_PredictStreamServer) error
Embedding(context.Context, *PredictOptions) (*EmbeddingResult, error)
GenerateImage(context.Context, *GenerateImageRequest) (*Result, error)
AudioTranscription(context.Context, *TranscriptRequest) (*TranscriptResult, error)
TTS(context.Context, *TTSRequest) (*Result, error)
TokenizeString(context.Context, *PredictOptions) (*TokenizationResponse, error)
Status(context.Context, *HealthMessage) (*StatusResponse, error)
mustEmbedUnimplementedBackendServer()
}
// UnimplementedBackendServer must be embedded to have forward compatible implementations.
type UnimplementedBackendServer struct {
}
func (UnimplementedBackendServer) Health(context.Context, *HealthMessage) (*Reply, error) {
return nil, status.Errorf(codes.Unimplemented, "method Health not implemented")
}
func (UnimplementedBackendServer) Predict(context.Context, *PredictOptions) (*Reply, error) {
return nil, status.Errorf(codes.Unimplemented, "method Predict not implemented")
}
func (UnimplementedBackendServer) LoadModel(context.Context, *ModelOptions) (*Result, error) {
return nil, status.Errorf(codes.Unimplemented, "method LoadModel not implemented")
}
func (UnimplementedBackendServer) PredictStream(*PredictOptions, Backend_PredictStreamServer) error {
return status.Errorf(codes.Unimplemented, "method PredictStream not implemented")
}
func (UnimplementedBackendServer) Embedding(context.Context, *PredictOptions) (*EmbeddingResult, error) {
return nil, status.Errorf(codes.Unimplemented, "method Embedding not implemented")
}
func (UnimplementedBackendServer) GenerateImage(context.Context, *GenerateImageRequest) (*Result, error) {
return nil, status.Errorf(codes.Unimplemented, "method GenerateImage not implemented")
}
func (UnimplementedBackendServer) AudioTranscription(context.Context, *TranscriptRequest) (*TranscriptResult, error) {
return nil, status.Errorf(codes.Unimplemented, "method AudioTranscription not implemented")
}
func (UnimplementedBackendServer) TTS(context.Context, *TTSRequest) (*Result, error) {
return nil, status.Errorf(codes.Unimplemented, "method TTS not implemented")
}
func (UnimplementedBackendServer) TokenizeString(context.Context, *PredictOptions) (*TokenizationResponse, error) {
return nil, status.Errorf(codes.Unimplemented, "method TokenizeString not implemented")
}
func (UnimplementedBackendServer) Status(context.Context, *HealthMessage) (*StatusResponse, error) {
return nil, status.Errorf(codes.Unimplemented, "method Status not implemented")
}
func (UnimplementedBackendServer) mustEmbedUnimplementedBackendServer() {}
// UnsafeBackendServer may be embedded to opt out of forward compatibility for this service.
// Use of this interface is not recommended, as added methods to BackendServer will
// result in compilation errors.
type UnsafeBackendServer interface {
mustEmbedUnimplementedBackendServer()
}
func RegisterBackendServer(s grpc.ServiceRegistrar, srv BackendServer) {
s.RegisterService(&Backend_ServiceDesc, srv)
}
func _Backend_Health_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(HealthMessage)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).Health(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/Health",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).Health(ctx, req.(*HealthMessage))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_Predict_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(PredictOptions)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).Predict(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/Predict",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).Predict(ctx, req.(*PredictOptions))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_LoadModel_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(ModelOptions)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).LoadModel(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/LoadModel",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).LoadModel(ctx, req.(*ModelOptions))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_PredictStream_Handler(srv interface{}, stream grpc.ServerStream) error {
m := new(PredictOptions)
if err := stream.RecvMsg(m); err != nil {
return err
}
return srv.(BackendServer).PredictStream(m, &backendPredictStreamServer{stream})
}
type Backend_PredictStreamServer interface {
Send(*Reply) error
grpc.ServerStream
}
type backendPredictStreamServer struct {
grpc.ServerStream
}
func (x *backendPredictStreamServer) Send(m *Reply) error {
return x.ServerStream.SendMsg(m)
}
func _Backend_Embedding_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(PredictOptions)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).Embedding(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/Embedding",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).Embedding(ctx, req.(*PredictOptions))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_GenerateImage_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(GenerateImageRequest)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).GenerateImage(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/GenerateImage",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).GenerateImage(ctx, req.(*GenerateImageRequest))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_AudioTranscription_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(TranscriptRequest)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).AudioTranscription(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/AudioTranscription",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).AudioTranscription(ctx, req.(*TranscriptRequest))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_TTS_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(TTSRequest)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).TTS(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/TTS",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).TTS(ctx, req.(*TTSRequest))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_TokenizeString_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(PredictOptions)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).TokenizeString(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/TokenizeString",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).TokenizeString(ctx, req.(*PredictOptions))
}
return interceptor(ctx, in, info, handler)
}
func _Backend_Status_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(HealthMessage)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(BackendServer).Status(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/backend.Backend/Status",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(BackendServer).Status(ctx, req.(*HealthMessage))
}
return interceptor(ctx, in, info, handler)
}
// Backend_ServiceDesc is the grpc.ServiceDesc for Backend service.
// It's only intended for direct use with grpc.RegisterService,
// and not to be introspected or modified (even as a copy)
var Backend_ServiceDesc = grpc.ServiceDesc{
ServiceName: "backend.Backend",
HandlerType: (*BackendServer)(nil),
Methods: []grpc.MethodDesc{
{
MethodName: "Health",
Handler: _Backend_Health_Handler,
},
{
MethodName: "Predict",
Handler: _Backend_Predict_Handler,
},
{
MethodName: "LoadModel",
Handler: _Backend_LoadModel_Handler,
},
{
MethodName: "Embedding",
Handler: _Backend_Embedding_Handler,
},
{
MethodName: "GenerateImage",
Handler: _Backend_GenerateImage_Handler,
},
{
MethodName: "AudioTranscription",
Handler: _Backend_AudioTranscription_Handler,
},
{
MethodName: "TTS",
Handler: _Backend_TTS_Handler,
},
{
MethodName: "TokenizeString",
Handler: _Backend_TokenizeString_Handler,
},
{
MethodName: "Status",
Handler: _Backend_Status_Handler,
},
},
Streams: []grpc.StreamDesc{
{
StreamName: "PredictStream",
Handler: _Backend_PredictStream_Handler,
ServerStreams: true,
},
},
Metadata: "backend/backend.proto",
}

View file

@ -5,6 +5,7 @@ SYSTEM ?= $(HOST_SYSTEM)
TAG_LIB_GRPC?=v1.59.0
GIT_REPO_LIB_GRPC?=https://github.com/grpc/grpc.git
GIT_CLONE_DEPTH?=1
NUM_BUILD_THREADS?=$(shell nproc --ignore=1)
INSTALLED_PACKAGES=installed_packages
GRPC_REPO=grpc_repo
@ -46,17 +47,12 @@ endif
$(INSTALLED_PACKAGES): grpc_build
$(GRPC_REPO):
mkdir -p $(GRPC_REPO)/grpc
cd $(GRPC_REPO)/grpc && \
git init && \
git remote add origin $(GIT_REPO_LIB_GRPC) && \
git fetch origin && \
git checkout $(TAG_LIB_GRPC) && \
git submodule update --init --recursive --depth 1 --single-branch
git clone --depth $(GIT_CLONE_DEPTH) -b $(TAG_LIB_GRPC) $(GIT_REPO_LIB_GRPC) $(GRPC_REPO)/grpc
cd $(GRPC_REPO)/grpc && git submodule update --jobs 2 --init --recursive --depth $(GIT_CLONE_DEPTH)
$(GRPC_BUILD): $(GRPC_REPO)
mkdir -p $(GRPC_BUILD)
cd $(GRPC_BUILD) && cmake $(CMAKE_ARGS) ../$(GRPC_REPO)/grpc && cmake --build . && cmake --build . --target install
cd $(GRPC_BUILD) && cmake $(CMAKE_ARGS) ../$(GRPC_REPO)/grpc && cmake --build . -- -j ${NUM_BUILD_THREADS} && cmake --build . --target install -- -j ${NUM_BUILD_THREADS}
build: $(INSTALLED_PACKAGES)

View file

@ -1,17 +1,17 @@
## XXX: In some versions of CMake clip wasn't being built before llama.
## This is an hack for now, but it should be fixed in the future.
# set(TARGET myclip)
# add_library(${TARGET} clip.cpp clip.h clip-impl.h llava.cpp llava.h)
# install(TARGETS ${TARGET} LIBRARY)
# target_include_directories(myclip PUBLIC .)
# target_include_directories(myclip PUBLIC ../..)
# target_include_directories(myclip PUBLIC ../../common)
# target_link_libraries(${TARGET} PRIVATE common ggml llama ${CMAKE_THREAD_LIBS_INIT})
# target_compile_features(${TARGET} PRIVATE cxx_std_11)
# if (NOT MSVC)
# target_compile_options(${TARGET} PRIVATE -Wno-cast-qual) # stb_image.h
# endif()
set(TARGET myclip)
add_library(${TARGET} clip.cpp clip.h llava.cpp llava.h)
install(TARGETS ${TARGET} LIBRARY)
target_include_directories(myclip PUBLIC .)
target_include_directories(myclip PUBLIC ../..)
target_include_directories(myclip PUBLIC ../../common)
target_link_libraries(${TARGET} PRIVATE common ggml llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if (NOT MSVC)
target_compile_options(${TARGET} PRIVATE -Wno-cast-qual) # stb_image.h
endif()
# END CLIP hack
@ -74,12 +74,8 @@ add_library(hw_grpc_proto
${hw_proto_srcs}
${hw_proto_hdrs} )
add_executable(${TARGET} grpc-server.cpp utils.hpp json.hpp httplib.h)
target_include_directories(${TARGET} PRIVATE ../llava)
target_include_directories(${TARGET} PRIVATE ${CMAKE_SOURCE_DIR})
target_link_libraries(${TARGET} PRIVATE common llama mtmd ${CMAKE_THREAD_LIBS_INIT} absl::flags hw_grpc_proto
add_executable(${TARGET} grpc-server.cpp utils.hpp json.hpp)
target_link_libraries(${TARGET} PRIVATE common llama myclip ${CMAKE_THREAD_LIBS_INIT} absl::flags hw_grpc_proto
absl::flags_parse
gRPC::${_REFLECTION}
gRPC::${_GRPC_GRPCPP}

View file

@ -1,87 +1,77 @@
LLAMA_VERSION?=
LLAMA_REPO?=https://github.com/ggerganov/llama.cpp
CMAKE_ARGS?=
BUILD_TYPE?=
ONEAPI_VARS?=/opt/intel/oneapi/setvars.sh
TARGET?=--target grpc-server
# Disable Shared libs as we are linking on static gRPC and we can't mix shared and static
CMAKE_ARGS+=-DBUILD_SHARED_LIBS=OFF -DLLAMA_CURL=OFF
# If build type is cublas, then we set -DGGML_CUDA=ON to CMAKE_ARGS automatically
# If build type is cublas, then we set -DLLAMA_CUBLAS=ON to CMAKE_ARGS automatically
ifeq ($(BUILD_TYPE),cublas)
CMAKE_ARGS+=-DGGML_CUDA=ON
# If build type is openblas then we set -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
CMAKE_ARGS+=-DLLAMA_CUBLAS=ON
# If build type is openblas then we set -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
# to CMAKE_ARGS automatically
else ifeq ($(BUILD_TYPE),openblas)
CMAKE_ARGS+=-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
# If build type is clblas (openCL) we set -DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path
CMAKE_ARGS+=-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
# If build type is clblas (openCL) we set -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
else ifeq ($(BUILD_TYPE),clblas)
CMAKE_ARGS+=-DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path
CMAKE_ARGS+=-DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
else ifeq ($(BUILD_TYPE),hipblas)
CMAKE_ARGS+=-DGGML_HIP=ON
# If it's OSX, DO NOT embed the metal library - -DGGML_METAL_EMBED_LIBRARY=ON requires further investigation
CMAKE_ARGS+=-DLLAMA_HIPBLAS=ON
# If it's OSX, DO NOT embed the metal library - -DLLAMA_METAL_EMBED_LIBRARY=ON requires further investigation
# But if it's OSX without metal, disable it here
else ifeq ($(OS),Darwin)
else ifeq ($(OS),darwin)
ifneq ($(BUILD_TYPE),metal)
CMAKE_ARGS+=-DGGML_METAL=OFF
else
CMAKE_ARGS+=-DGGML_METAL=ON
CMAKE_ARGS+=-DGGML_METAL_EMBED_LIBRARY=ON
TARGET+=--target ggml-metal
CMAKE_ARGS+=-DLLAMA_METAL=OFF
endif
endif
ifeq ($(BUILD_TYPE),sycl_f16)
CMAKE_ARGS+=-DGGML_SYCL=ON \
-DCMAKE_C_COMPILER=icx \
-DCMAKE_CXX_COMPILER=icpx \
-DCMAKE_CXX_FLAGS="-fsycl" \
-DGGML_SYCL_F16=ON
CMAKE_ARGS+=-DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
endif
ifeq ($(BUILD_TYPE),sycl_f32)
CMAKE_ARGS+=-DGGML_SYCL=ON \
-DCMAKE_C_COMPILER=icx \
-DCMAKE_CXX_COMPILER=icpx \
-DCMAKE_CXX_FLAGS="-fsycl"
CMAKE_ARGS+=-DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
endif
llama.cpp:
mkdir -p llama.cpp
cd llama.cpp && \
git init && \
git remote add origin $(LLAMA_REPO) && \
git fetch origin && \
git checkout -b build $(LLAMA_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
git clone --recurse-submodules https://github.com/ggerganov/llama.cpp llama.cpp
if [ -z "$(LLAMA_VERSION)" ]; then \
exit 1; \
fi
cd llama.cpp && git checkout -b build $(LLAMA_VERSION) && git submodule update --init --recursive --depth 1
llama.cpp/tools/grpc-server: llama.cpp
mkdir -p llama.cpp/tools/grpc-server
bash prepare.sh
llama.cpp/examples/grpc-server: llama.cpp
mkdir -p llama.cpp/examples/grpc-server
cp -r $(abspath ./)/CMakeLists.txt llama.cpp/examples/grpc-server/
cp -r $(abspath ./)/grpc-server.cpp llama.cpp/examples/grpc-server/
cp -rfv $(abspath ./)/json.hpp llama.cpp/examples/grpc-server/
cp -rfv $(abspath ./)/utils.hpp llama.cpp/examples/grpc-server/
echo "add_subdirectory(grpc-server)" >> llama.cpp/examples/CMakeLists.txt
## XXX: In some versions of CMake clip wasn't being built before llama.
## This is an hack for now, but it should be fixed in the future.
cp -rfv llama.cpp/examples/llava/clip.h llama.cpp/examples/grpc-server/clip.h
cp -rfv llama.cpp/examples/llava/llava.cpp llama.cpp/examples/grpc-server/llava.cpp
echo '#include "llama.h"' > llama.cpp/examples/grpc-server/llava.h
cat llama.cpp/examples/llava/llava.h >> llama.cpp/examples/grpc-server/llava.h
cp -rfv llama.cpp/examples/llava/clip.cpp llama.cpp/examples/grpc-server/clip.cpp
rebuild:
bash prepare.sh
cp -rfv $(abspath ./)/CMakeLists.txt llama.cpp/examples/grpc-server/
cp -rfv $(abspath ./)/grpc-server.cpp llama.cpp/examples/grpc-server/
cp -rfv $(abspath ./)/json.hpp llama.cpp/examples/grpc-server/
rm -rf grpc-server
$(MAKE) grpc-server
purge:
rm -rf llama.cpp/build
rm -rf llama.cpp/tools/grpc-server
clean:
rm -rf llama.cpp
rm -rf grpc-server
clean: purge
rm -rf llama.cpp
grpc-server: llama.cpp llama.cpp/tools/grpc-server
@echo "Building grpc-server with $(BUILD_TYPE) build type and $(CMAKE_ARGS)"
grpc-server: llama.cpp llama.cpp/examples/grpc-server
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
+bash -c "source $(ONEAPI_VARS); \
cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release $(TARGET)"
bash -c "source $(ONEAPI_VARS); \
cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release"
else
+cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release $(TARGET)
cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release
endif
cp llama.cpp/build/bin/grpc-server .

File diff suppressed because it is too large Load diff

24596
backend/cpp/llama/json.hpp Normal file

File diff suppressed because it is too large Load diff

View file

@ -1,13 +0,0 @@
diff --git a/tools/mtmd/clip.cpp b/tools/mtmd/clip.cpp
index 3cd0d2fa..6c5e811a 100644
--- a/tools/mtmd/clip.cpp
+++ b/tools/mtmd/clip.cpp
@@ -2608,7 +2608,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
int* patches_data = (int*)malloc(ggml_nbytes(patches));
for (int i = 0; i < num_patches; i++) {
- patches_data[i] = i + 1;
+ patches_data[i] = i;
}
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
free(patches_data);

View file

@ -1,52 +0,0 @@
#!/bin/bash
## Patches
## Apply patches from the `patches` directory
for patch in $(ls patches); do
echo "Applying patch $patch"
patch -d llama.cpp/ -p1 < patches/$patch
done
set -e
cp -r CMakeLists.txt llama.cpp/tools/grpc-server/
cp -r grpc-server.cpp llama.cpp/tools/grpc-server/
cp -rfv llama.cpp/common/json.hpp llama.cpp/tools/grpc-server/
cp -rfv llama.cpp/tools/server/utils.hpp llama.cpp/tools/grpc-server/
cp -rfv llama.cpp/tools/server/httplib.h llama.cpp/tools/grpc-server/
set +e
if grep -q "grpc-server" llama.cpp/tools/CMakeLists.txt; then
echo "grpc-server already added"
else
echo "add_subdirectory(grpc-server)" >> llama.cpp/tools/CMakeLists.txt
fi
set -e
# Now to keep maximum compatibility with the original server.cpp, we need to remove the index.html.gz.hpp and loading.html.hpp includes
# and remove the main function
# TODO: upstream this to the original server.cpp by extracting the upstream main function to a separate file
awk '
/int[ \t]+main[ \t]*\(/ { # If the line starts the main function
in_main=1; # Set a flag
open_braces=0; # Track number of open braces
}
in_main {
open_braces += gsub(/\{/, "{"); # Count opening braces
open_braces -= gsub(/\}/, "}"); # Count closing braces
if (open_braces == 0) { # If all braces are closed
in_main=0; # End skipping
}
next; # Skip lines inside main
}
!in_main # Print lines not inside main
' "llama.cpp/tools/server/server.cpp" > llama.cpp/tools/grpc-server/server.cpp
# remove index.html.gz.hpp and loading.html.hpp includes
if [[ "$OSTYPE" == "darwin"* ]]; then
# macOS
sed -i '' '/#include "index\.html\.gz\.hpp"/d; /#include "loading\.html\.hpp"/d' llama.cpp/tools/grpc-server/server.cpp
else
# Linux and others
sed -i '/#include "index\.html\.gz\.hpp"/d; /#include "loading\.html\.hpp"/d' llama.cpp/tools/grpc-server/server.cpp
fi

510
backend/cpp/llama/utils.hpp Normal file
View file

@ -0,0 +1,510 @@
// https://github.com/ggerganov/llama.cpp/blob/master/examples/server/utils.hpp
#pragma once
#include <string>
#include <vector>
#include <set>
#include <mutex>
#include <condition_variable>
#include <unordered_map>
#include "json.hpp"
#include "../llava/clip.h"
using json = nlohmann::json;
extern bool server_verbose;
#ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1
#endif
#if SERVER_VERBOSE != 1
#define LOG_VERBOSE(MSG, ...)
#else
#define LOG_VERBOSE(MSG, ...) \
do \
{ \
if (server_verbose) \
{ \
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
} \
} while (0)
#endif
#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
//
// parallel
//
enum server_state {
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
SERVER_STATE_READY, // Server is ready and model is loaded
SERVER_STATE_ERROR // An error occurred, load_model failed
};
enum task_type {
TASK_TYPE_COMPLETION,
TASK_TYPE_CANCEL,
TASK_TYPE_NEXT_RESPONSE
};
struct task_server {
int id = -1; // to be filled by llama_server_queue
int target_id;
task_type type;
json data;
bool infill_mode = false;
bool embedding_mode = false;
int multitask_id = -1;
};
struct task_result {
int id;
int multitask_id = -1;
bool stop;
bool error;
json result_json;
};
struct task_multi {
int id;
std::set<int> subtasks_remaining{};
std::vector<task_result> results{};
};
// TODO: can become bool if we can't find use of more states
enum slot_state
{
IDLE,
PROCESSING,
};
enum slot_command
{
NONE,
LOAD_PROMPT,
RELEASE,
};
struct slot_params
{
bool stream = true;
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
uint32_t seed = -1; // RNG seed
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_predict = -1; // new tokens to predict
std::vector<std::string> antiprompt;
json input_prefix;
json input_suffix;
};
struct slot_image
{
int32_t id;
bool request_encode_image = false;
float * image_embedding = nullptr;
int32_t image_tokens = 0;
clip_image_u8 * img_data;
std::string prefix_prompt; // before of this image
};
// completion token output with probabilities
struct completion_token_output
{
struct token_prob
{
llama_token tok;
float prob;
};
std::vector<token_prob> probs;
llama_token tok;
std::string text_to_send;
};
static inline void server_log(const char *level, const char *function, int line,
const char *message, const nlohmann::ordered_json &extra)
{
nlohmann::ordered_json log
{
{"timestamp", time(nullptr)},
{"level", level},
{"function", function},
{"line", line},
{"message", message},
};
if (!extra.empty())
{
log.merge_patch(extra);
}
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
printf("%.*s\n", (int)str.size(), str.data());
fflush(stdout);
}
//
// server utils
//
template <typename T>
static T json_value(const json &body, const std::string &key, const T &default_value)
{
// Fallback null to default value
return body.contains(key) && !body.at(key).is_null()
? body.value(key, default_value)
: default_value;
}
inline std::string format_chatml(std::vector<json> messages)
{
std::ostringstream chatml_msgs;
for (auto it = messages.begin(); it != messages.end(); ++it) {
chatml_msgs << "<|im_start|>"
<< json_value(*it, "role", std::string("user")) << '\n';
chatml_msgs << json_value(*it, "content", std::string(""))
<< "<|im_end|>\n";
}
chatml_msgs << "<|im_start|>assistant" << '\n';
return chatml_msgs.str();
}
//
// work queue utils
//
struct llama_server_queue {
int id = 0;
std::mutex mutex_tasks;
// queues
std::vector<task_server> queue_tasks;
std::vector<task_server> queue_tasks_deferred;
std::vector<task_multi> queue_multitasks;
std::condition_variable condition_tasks;
// callback functions
std::function<void(task_server&)> callback_new_task;
std::function<void(task_multi&)> callback_finish_multitask;
std::function<void(void)> callback_all_task_finished;
// Add a new task to the end of the queue
int post(task_server task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (task.id == -1) {
task.id = id++;
}
queue_tasks.push_back(std::move(task));
condition_tasks.notify_one();
return task.id;
}
// Add a new task, but defer until one slot is available
void defer(task_server task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
queue_tasks_deferred.push_back(std::move(task));
}
// Get the next id for creating anew task
int get_new_id() {
std::unique_lock<std::mutex> lock(mutex_tasks);
return id++;
}
// Register function to process a new task
void on_new_task(std::function<void(task_server&)> callback) {
callback_new_task = callback;
}
// Register function to process a multitask
void on_finish_multitask(std::function<void(task_multi&)> callback) {
callback_finish_multitask = callback;
}
// Register the function to be called when the batch of tasks is finished
void on_all_tasks_finished(std::function<void(void)> callback) {
callback_all_task_finished = callback;
}
// Call when the state of one slot is changed
void notify_slot_changed() {
// move deferred tasks back to main loop
std::unique_lock<std::mutex> lock(mutex_tasks);
for (auto & task : queue_tasks_deferred) {
queue_tasks.push_back(std::move(task));
}
queue_tasks_deferred.clear();
}
// Start the main loop. This call is blocking
[[noreturn]]
void start_loop() {
while (true) {
// new task arrived
LOG_VERBOSE("have new task", {});
{
while (true)
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
lock.unlock();
break;
}
task_server task = queue_tasks.front();
queue_tasks.erase(queue_tasks.begin());
lock.unlock();
LOG_VERBOSE("callback_new_task", {});
callback_new_task(task);
}
LOG_VERBOSE("callback_all_task_finished", {});
// process and update all the multitasks
auto queue_iterator = queue_multitasks.begin();
while (queue_iterator != queue_multitasks.end())
{
if (queue_iterator->subtasks_remaining.empty())
{
// all subtasks done == multitask is done
task_multi current_multitask = *queue_iterator;
callback_finish_multitask(current_multitask);
// remove this multitask
queue_iterator = queue_multitasks.erase(queue_iterator);
}
else
{
++queue_iterator;
}
}
// all tasks in the current loop is finished
callback_all_task_finished();
}
LOG_VERBOSE("wait for new task", {});
// wait for new task
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
condition_tasks.wait(lock, [&]{
return !queue_tasks.empty();
});
}
}
}
}
//
// functions to manage multitasks
//
// add a multitask by specifying the id of all subtask (subtask is a task_server)
void add_multitask(int multitask_id, std::vector<int>& sub_ids)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
task_multi multi;
multi.id = multitask_id;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
}
// updatethe remaining subtasks, while appending results to multitask
void update_multitask(int multitask_id, int subtask_id, task_result& result)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
for (auto& multitask : queue_multitasks)
{
if (multitask.id == multitask_id)
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result);
}
}
}
};
struct llama_server_response {
typedef std::function<void(int, int, task_result&)> callback_multitask_t;
callback_multitask_t callback_update_multitask;
// for keeping track of all tasks waiting for the result
std::set<int> waiting_task_ids;
// the main result queue
std::vector<task_result> queue_results;
std::mutex mutex_results;
std::condition_variable condition_results;
void add_waiting_task_id(int task_id) {
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.insert(task_id);
}
void remove_waiting_task_id(int task_id) {
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.erase(task_id);
}
// This function blocks the thread until there is a response for this task_id
task_result recv(int task_id) {
while (true)
{
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
LOG_VERBOSE("condition_results unblock", {});
for (int i = 0; i < (int) queue_results.size(); i++)
{
if (queue_results[i].id == task_id)
{
assert(queue_results[i].multitask_id == -1);
task_result res = queue_results[i];
queue_results.erase(queue_results.begin() + i);
return res;
}
}
}
// should never reach here
}
// Register the function to update multitask
void on_multitask_update(callback_multitask_t callback) {
callback_update_multitask = callback;
}
// Send a new result to a waiting task_id
void send(task_result result) {
std::unique_lock<std::mutex> lock(mutex_results);
LOG_VERBOSE("send new result", {});
for (auto& task_id : waiting_task_ids) {
// LOG_TEE("waiting task id %i \n", task_id);
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
if (result.multitask_id == task_id)
{
LOG_VERBOSE("callback_update_multitask", {});
callback_update_multitask(task_id, result.id, result);
continue;
}
if (result.id == task_id)
{
LOG_VERBOSE("queue_results.push_back", {});
queue_results.push_back(result);
condition_results.notify_one();
return;
}
}
}
};
//
// base64 utils (TODO: move to common in the future)
//
static const std::string base64_chars =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
static inline bool is_base64(uint8_t c)
{
return (isalnum(c) || (c == '+') || (c == '/'));
}
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string)
{
int i = 0;
int j = 0;
int in_ = 0;
int in_len = encoded_string.size();
uint8_t char_array_4[4];
uint8_t char_array_3[3];
std::vector<uint8_t> ret;
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
{
char_array_4[i++] = encoded_string[in_]; in_++;
if (i == 4)
{
for (i = 0; i <4; i++)
{
char_array_4[i] = base64_chars.find(char_array_4[i]);
}
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (i = 0; (i < 3); i++)
{
ret.push_back(char_array_3[i]);
}
i = 0;
}
}
if (i)
{
for (j = i; j <4; j++)
{
char_array_4[j] = 0;
}
for (j = 0; j <4; j++)
{
char_array_4[j] = base64_chars.find(char_array_4[j]);
}
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (j = 0; (j < i - 1); j++)
{
ret.push_back(char_array_3[j]);
}
}
return ret;
}
//
// random string / id
//
static std::string random_string()
{
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
std::random_device rd;
std::mt19937 generator(rd());
std::string result(32, ' ');
for (int i = 0; i < 32; ++i) {
result[i] = str[generator() % str.size()];
}
return result;
}
static std::string gen_chatcmplid()
{
std::stringstream chatcmplid;
chatcmplid << "chatcmpl-" << random_string();
return chatcmplid.str();
}

View file

@ -1,25 +0,0 @@
INCLUDE_PATH := $(abspath ./)
LIBRARY_PATH := $(abspath ./)
AR?=ar
BUILD_TYPE?=
# keep standard at C11 and C++11
CXXFLAGS = -I. -I$(INCLUDE_PATH)/../../../sources/bark.cpp/examples -I$(INCLUDE_PATH)/../../../sources/bark.cpp/spm-headers -I$(INCLUDE_PATH)/../../../sources/bark.cpp -O3 -DNDEBUG -std=c++17 -fPIC
LDFLAGS = -L$(LIBRARY_PATH) -L$(LIBRARY_PATH)/../../../sources/bark.cpp/build/examples -lbark -lstdc++ -lm
# warnings
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function
gobark.o:
$(CXX) $(CXXFLAGS) gobark.cpp -o gobark.o -c $(LDFLAGS)
libbark.a: gobark.o
cp $(INCLUDE_PATH)/../../../sources/bark.cpp/build/libbark.a ./
$(AR) rcs libbark.a gobark.o
$(AR) rcs libbark.a $(LIBRARY_PATH)/../../../sources/bark.cpp/build/encodec.cpp/ggml/src/CMakeFiles/ggml.dir/ggml.c.o
$(AR) rcs libbark.a $(LIBRARY_PATH)/../../../sources/bark.cpp/build/encodec.cpp/ggml/src/CMakeFiles/ggml.dir/ggml-alloc.c.o
$(AR) rcs libbark.a $(LIBRARY_PATH)/../../../sources/bark.cpp/build/encodec.cpp/ggml/src/CMakeFiles/ggml.dir/ggml-backend.c.o
clean:
rm -f gobark.o libbark.a

View file

@ -1,85 +0,0 @@
#include <iostream>
#include <tuple>
#include "bark.h"
#include "gobark.h"
#include "common.h"
#include "ggml.h"
struct bark_context *c;
void bark_print_progress_callback(struct bark_context *bctx, enum bark_encoding_step step, int progress, void *user_data) {
if (step == bark_encoding_step::SEMANTIC) {
printf("\rGenerating semantic tokens... %d%%", progress);
} else if (step == bark_encoding_step::COARSE) {
printf("\rGenerating coarse tokens... %d%%", progress);
} else if (step == bark_encoding_step::FINE) {
printf("\rGenerating fine tokens... %d%%", progress);
}
fflush(stdout);
}
int load_model(char *model) {
// initialize bark context
struct bark_context_params ctx_params = bark_context_default_params();
bark_params params;
params.model_path = model;
// ctx_params.verbosity = verbosity;
ctx_params.progress_callback = bark_print_progress_callback;
ctx_params.progress_callback_user_data = nullptr;
struct bark_context *bctx = bark_load_model(params.model_path.c_str(), ctx_params, params.seed);
if (!bctx) {
fprintf(stderr, "%s: Could not load model\n", __func__);
return 1;
}
c = bctx;
return 0;
}
int tts(char *text,int threads, char *dst ) {
ggml_time_init();
const int64_t t_main_start_us = ggml_time_us();
// generate audio
if (!bark_generate_audio(c, text, threads)) {
fprintf(stderr, "%s: An error occurred. If the problem persists, feel free to open an issue to report it.\n", __func__);
return 1;
}
const float *audio_data = bark_get_audio_data(c);
if (audio_data == NULL) {
fprintf(stderr, "%s: Could not get audio data\n", __func__);
return 1;
}
const int audio_arr_size = bark_get_audio_data_size(c);
std::vector<float> audio_arr(audio_data, audio_data + audio_arr_size);
write_wav_on_disk(audio_arr, dst);
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
const int64_t t_load_us = bark_get_load_time(c);
const int64_t t_eval_us = bark_get_eval_time(c);
printf("\n\n");
printf("%s: load time = %8.2f ms\n", __func__, t_load_us / 1000.0f);
printf("%s: eval time = %8.2f ms\n", __func__, t_eval_us / 1000.0f);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);
}
return 0;
}
int unload() {
bark_free(c);
}

View file

@ -1,52 +0,0 @@
package main
// #cgo CXXFLAGS: -I${SRCDIR}/../../../sources/bark.cpp/ -I${SRCDIR}/../../../sources/bark.cpp/encodec.cpp -I${SRCDIR}/../../../sources/bark.cpp/examples -I${SRCDIR}/../../../sources/bark.cpp/spm-headers
// #cgo LDFLAGS: -L${SRCDIR}/ -L${SRCDIR}/../../../sources/bark.cpp/build/examples -L${SRCDIR}/../../../sources/bark.cpp/build/encodec.cpp/ -lbark -lencodec -lcommon
// #include <gobark.h>
// #include <stdlib.h>
import "C"
import (
"fmt"
"unsafe"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
)
type Bark struct {
base.SingleThread
threads int
}
func (sd *Bark) Load(opts *pb.ModelOptions) error {
sd.threads = int(opts.Threads)
modelFile := C.CString(opts.ModelFile)
defer C.free(unsafe.Pointer(modelFile))
ret := C.load_model(modelFile)
if ret != 0 {
return fmt.Errorf("inference failed")
}
return nil
}
func (sd *Bark) TTS(opts *pb.TTSRequest) error {
t := C.CString(opts.Text)
defer C.free(unsafe.Pointer(t))
dst := C.CString(opts.Dst)
defer C.free(unsafe.Pointer(dst))
threads := C.int(sd.threads)
ret := C.tts(t, threads, dst)
if ret != 0 {
return fmt.Errorf("inference failed")
}
return nil
}

View file

@ -1,8 +0,0 @@
#ifdef __cplusplus
extern "C" {
#endif
int load_model(char *model);
int tts(char *text,int threads, char *dst );
#ifdef __cplusplus
}
#endif

View file

@ -1,135 +0,0 @@
INCLUDE_PATH := $(abspath ./)
LIBRARY_PATH := $(abspath ./)
AR?=ar
CMAKE_ARGS?=
BUILD_TYPE?=
ONEAPI_VARS?=/opt/intel/oneapi/setvars.sh
# keep standard at C11 and C++11
CXXFLAGS = -I. -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp/thirdparty -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp/ggml/include -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp -O3 -DNDEBUG -std=c++17 -fPIC
GOCMD?=go
CGO_LDFLAGS?=
# Avoid parent make file overwriting CGO_LDFLAGS which is needed for hipblas
CGO_LDFLAGS_SYCL=
GO_TAGS?=
LD_FLAGS?=
# Disable Shared libs as we are linking on static gRPC and we can't mix shared and static
CMAKE_ARGS+=-DBUILD_SHARED_LIBS=OFF
# If build type is cublas, then we set -DGGML_CUDA=ON to CMAKE_ARGS automatically
ifeq ($(BUILD_TYPE),cublas)
CMAKE_ARGS+=-DSD_CUDA=ON
# If build type is openblas then we set -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
# to CMAKE_ARGS automatically
else ifeq ($(BUILD_TYPE),openblas)
CMAKE_ARGS+=-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
# If build type is clblas (openCL) we set -DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path
else ifeq ($(BUILD_TYPE),clblas)
CMAKE_ARGS+=-DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
else ifeq ($(BUILD_TYPE),hipblas)
CMAKE_ARGS+=-DSD_HIPBLAS=ON
# If it's OSX, DO NOT embed the metal library - -DGGML_METAL_EMBED_LIBRARY=ON requires further investigation
# But if it's OSX without metal, disable it here
else ifeq ($(OS),Darwin)
ifneq ($(BUILD_TYPE),metal)
CMAKE_ARGS+=-DSD_METAL=OFF
else
CMAKE_ARGS+=-DSD_METAL=ON
CMAKE_ARGS+=-DGGML_METAL_EMBED_LIBRARY=ON
TARGET+=--target ggml-metal
endif
endif
ifeq ($(BUILD_TYPE),sycl_f16)
CMAKE_ARGS+=-DGGML_SYCL=ON \
-DCMAKE_C_COMPILER=icx \
-DCMAKE_CXX_COMPILER=icpx \
-DSD_SYCL=ON \
-DGGML_SYCL_F16=ON
CC=icx
CXX=icpx
CGO_LDFLAGS_SYCL += -fsycl -L${DNNLROOT}/lib -ldnnl ${MKLROOT}/lib/intel64/libmkl_sycl.a -fiopenmp -fopenmp-targets=spir64 -lOpenCL
CGO_LDFLAGS_SYCL += $(shell pkg-config --libs mkl-static-lp64-gomp)
CGO_CXXFLAGS += -fiopenmp -fopenmp-targets=spir64
CGO_CXXFLAGS += $(shell pkg-config --cflags mkl-static-lp64-gomp )
endif
ifeq ($(BUILD_TYPE),sycl_f32)
CMAKE_ARGS+=-DGGML_SYCL=ON \
-DCMAKE_C_COMPILER=icx \
-DCMAKE_CXX_COMPILER=icpx \
-DSD_SYCL=ON
CC=icx
CXX=icpx
CGO_LDFLAGS_SYCL += -fsycl -L${DNNLROOT}/lib -ldnnl ${MKLROOT}/lib/intel64/libmkl_sycl.a -fiopenmp -fopenmp-targets=spir64 -lOpenCL
CGO_LDFLAGS_SYCL += $(shell pkg-config --libs mkl-static-lp64-gomp)
CGO_CXXFLAGS += -fiopenmp -fopenmp-targets=spir64
CGO_CXXFLAGS += $(shell pkg-config --cflags mkl-static-lp64-gomp )
endif
# warnings
# CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function
# Find all .a archives in ARCHIVE_DIR
# (ggml can have different backends cpu, cuda, etc., each backend generates a .a archive)
GGML_ARCHIVE_DIR := build/ggml/src/
ALL_ARCHIVES := $(shell find $(GGML_ARCHIVE_DIR) -type f -name '*.a')
# Name of the single merged library
COMBINED_LIB := libggmlall.a
# Rule to merge all the .a files into one
$(COMBINED_LIB): $(ALL_ARCHIVES)
@echo "Merging all .a into $(COMBINED_LIB)"
rm -f $@
mkdir -p merge-tmp
for a in $(ALL_ARCHIVES); do \
( cd merge-tmp && ar x ../$$a ); \
done
( cd merge-tmp && ar rcs ../$@ *.o )
# Ensure we have a proper index
ranlib $@
# Clean up
rm -rf merge-tmp
build/libstable-diffusion.a:
@echo "Building SD with $(BUILD_TYPE) build type and $(CMAKE_ARGS)"
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
+bash -c "source $(ONEAPI_VARS); \
mkdir -p build && \
cd build && \
cmake $(CMAKE_ARGS) ../../../../../sources/stablediffusion-ggml.cpp && \
cmake --build . --config Release"
else
mkdir -p build && \
cd build && \
cmake $(CMAKE_ARGS) ../../../../../sources/stablediffusion-ggml.cpp && \
cmake --build . --config Release
endif
$(MAKE) $(COMBINED_LIB)
gosd.o:
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
+bash -c "source $(ONEAPI_VARS); \
$(CXX) $(CXXFLAGS) gosd.cpp -o gosd.o -c"
else
$(CXX) $(CXXFLAGS) gosd.cpp -o gosd.o -c
endif
libsd.a: gosd.o
cp $(INCLUDE_PATH)/build/libstable-diffusion.a ./libsd.a
$(AR) rcs libsd.a gosd.o
stablediffusion-ggml:
CGO_LDFLAGS="$(CGO_LDFLAGS) $(CGO_LDFLAGS_SYCL)" C_INCLUDE_PATH="$(INCLUDE_PATH)" LIBRARY_PATH="$(LIBRARY_PATH)" \
CC="$(CC)" CXX="$(CXX)" CGO_CXXFLAGS="$(CGO_CXXFLAGS)" \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o ../../../../backend-assets/grpc/stablediffusion-ggml ./
ifneq ($(UPX),)
$(UPX) ../../../../backend-assets/grpc/stablediffusion-ggml
endif
clean:
rm -rf gosd.o libsd.a build $(COMBINED_LIB)

View file

@ -1,231 +0,0 @@
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <iostream>
#include <random>
#include <string>
#include <vector>
#include "gosd.h"
// #include "preprocessing.hpp"
#include "flux.hpp"
#include "stable-diffusion.h"
#define STB_IMAGE_IMPLEMENTATION
#define STB_IMAGE_STATIC
#include "stb_image.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#define STB_IMAGE_WRITE_STATIC
#include "stb_image_write.h"
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#define STB_IMAGE_RESIZE_STATIC
#include "stb_image_resize.h"
// Names of the sampler method, same order as enum sample_method in stable-diffusion.h
const char* sample_method_str[] = {
"euler_a",
"euler",
"heun",
"dpm2",
"dpm++2s_a",
"dpm++2m",
"dpm++2mv2",
"ipndm",
"ipndm_v",
"lcm",
"ddim_trailing",
"tcd",
};
// Names of the sigma schedule overrides, same order as sample_schedule in stable-diffusion.h
const char* schedule_str[] = {
"default",
"discrete",
"karras",
"exponential",
"ays",
"gits",
};
sd_ctx_t* sd_c;
sample_method_t sample_method;
int load_model(char *model, char* options[], int threads, int diff) {
fprintf (stderr, "Loading model!\n");
char *stableDiffusionModel = "";
if (diff == 1 ) {
stableDiffusionModel = model;
model = "";
}
// decode options. Options are in form optname:optvale, or if booleans only optname.
char *clip_l_path = "";
char *clip_g_path = "";
char *t5xxl_path = "";
char *vae_path = "";
char *scheduler = "";
char *sampler = "";
// If options is not NULL, parse options
for (int i = 0; options[i] != NULL; i++) {
char *optname = strtok(options[i], ":");
char *optval = strtok(NULL, ":");
if (optval == NULL) {
optval = "true";
}
if (!strcmp(optname, "clip_l_path")) {
clip_l_path = optval;
}
if (!strcmp(optname, "clip_g_path")) {
clip_g_path = optval;
}
if (!strcmp(optname, "t5xxl_path")) {
t5xxl_path = optval;
}
if (!strcmp(optname, "vae_path")) {
vae_path = optval;
}
if (!strcmp(optname, "scheduler")) {
scheduler = optval;
}
if (!strcmp(optname, "sampler")) {
sampler = optval;
}
}
int sample_method_found = -1;
for (int m = 0; m < N_SAMPLE_METHODS; m++) {
if (!strcmp(sampler, sample_method_str[m])) {
sample_method_found = m;
}
}
if (sample_method_found == -1) {
fprintf(stderr, "Invalid sample method, default to EULER_A!\n");
sample_method_found = EULER_A;
}
sample_method = (sample_method_t)sample_method_found;
int schedule_found = -1;
for (int d = 0; d < N_SCHEDULES; d++) {
if (!strcmp(scheduler, schedule_str[d])) {
schedule_found = d;
fprintf (stderr, "Found scheduler: %s\n", scheduler);
}
}
if (schedule_found == -1) {
fprintf (stderr, "Invalid scheduler! using DEFAULT\n");
schedule_found = DEFAULT;
}
schedule_t schedule = (schedule_t)schedule_found;
fprintf (stderr, "Creating context\n");
sd_ctx_t* sd_ctx = new_sd_ctx(model,
clip_l_path,
clip_g_path,
t5xxl_path,
stableDiffusionModel,
vae_path,
"",
"",
"",
"",
"",
false,
false,
false,
threads,
SD_TYPE_COUNT,
STD_DEFAULT_RNG,
schedule,
false,
false,
false,
false);
if (sd_ctx == NULL) {
fprintf (stderr, "failed loading model (generic error)\n");
return 1;
}
fprintf (stderr, "Created context: OK\n");
sd_c = sd_ctx;
return 0;
}
int gen_image(char *text, char *negativeText, int width, int height, int steps, int seed , char *dst, float cfg_scale) {
sd_image_t* results;
std::vector<int> skip_layers = {7, 8, 9};
fprintf (stderr, "Generating image\n");
results = txt2img(sd_c,
text,
negativeText,
-1, //clip_skip
cfg_scale, // sfg_scale
3.5f,
0, // eta
width,
height,
sample_method,
steps,
seed,
1,
NULL,
0.9f,
20.f,
false,
"",
skip_layers.data(),
skip_layers.size(),
0,
0.01,
0.2);
if (results == NULL) {
fprintf (stderr, "NO results\n");
return 1;
}
if (results[0].data == NULL) {
fprintf (stderr, "Results with no data\n");
return 1;
}
fprintf (stderr, "Writing PNG\n");
fprintf (stderr, "DST: %s\n", dst);
fprintf (stderr, "Width: %d\n", results[0].width);
fprintf (stderr, "Height: %d\n", results[0].height);
fprintf (stderr, "Channel: %d\n", results[0].channel);
fprintf (stderr, "Data: %p\n", results[0].data);
stbi_write_png(dst, results[0].width, results[0].height, results[0].channel,
results[0].data, 0, NULL);
fprintf (stderr, "Saved resulting image to '%s'\n", dst);
// TODO: free results. Why does it crash?
free(results[0].data);
results[0].data = NULL;
free(results);
fprintf (stderr, "gen_image is done", dst);
return 0;
}
int unload() {
free_sd_ctx(sd_c);
}

View file

@ -1,96 +0,0 @@
package main
// #cgo CXXFLAGS: -I${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp/thirdparty -I${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp -I${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp/ggml/include
// #cgo LDFLAGS: -L${SRCDIR}/ -lsd -lstdc++ -lm -lggmlall -lgomp
// #include <gosd.h>
// #include <stdlib.h>
import "C"
import (
"fmt"
"os"
"path/filepath"
"strings"
"unsafe"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/utils"
)
type SDGGML struct {
base.SingleThread
threads int
sampleMethod string
cfgScale float32
}
func (sd *SDGGML) Load(opts *pb.ModelOptions) error {
sd.threads = int(opts.Threads)
modelFile := C.CString(opts.ModelFile)
defer C.free(unsafe.Pointer(modelFile))
var options **C.char
// prepare the options array to pass to C
size := C.size_t(unsafe.Sizeof((*C.char)(nil)))
length := C.size_t(len(opts.Options))
options = (**C.char)(C.malloc(length * size))
view := (*[1 << 30]*C.char)(unsafe.Pointer(options))[0:len(opts.Options):len(opts.Options)]
var diffusionModel int
var oo []string
for _, op := range opts.Options {
if op == "diffusion_model" {
diffusionModel = 1
continue
}
// If it's an option path, we resolve absolute path from the model path
if strings.Contains(op, ":") && strings.Contains(op, "path") {
data := strings.Split(op, ":")
data[1] = filepath.Join(opts.ModelPath, data[1])
if err := utils.VerifyPath(data[1], opts.ModelPath); err == nil {
oo = append(oo, strings.Join(data, ":"))
}
} else {
oo = append(oo, op)
}
}
fmt.Fprintf(os.Stderr, "Options: %+v\n", oo)
for i, x := range oo {
view[i] = C.CString(x)
}
sd.cfgScale = opts.CFGScale
ret := C.load_model(modelFile, options, C.int(opts.Threads), C.int(diffusionModel))
if ret != 0 {
return fmt.Errorf("could not load model")
}
return nil
}
func (sd *SDGGML) GenerateImage(opts *pb.GenerateImageRequest) error {
t := C.CString(opts.PositivePrompt)
defer C.free(unsafe.Pointer(t))
dst := C.CString(opts.Dst)
defer C.free(unsafe.Pointer(dst))
negative := C.CString(opts.NegativePrompt)
defer C.free(unsafe.Pointer(negative))
ret := C.gen_image(t, negative, C.int(opts.Width), C.int(opts.Height), C.int(opts.Step), C.int(opts.Seed), dst, C.float(sd.cfgScale))
if ret != 0 {
return fmt.Errorf("inference failed")
}
return nil
}

View file

@ -1,8 +0,0 @@
#ifdef __cplusplus
extern "C" {
#endif
int load_model(char *model, char* options[], int threads, int diffusionModel);
int gen_image(char *text, char *negativeText, int width, int height, int steps, int seed, char *dst, float cfg_scale);
#ifdef __cplusplus
}
#endif

View file

@ -1,10 +1,11 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
grpc "github.com/mudler/LocalAI/pkg/grpc"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
@ -14,7 +15,7 @@ var (
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &Bark{}); err != nil {
if err := grpc.StartServer(*addr, &Image{}); err != nil {
panic(err)
}
}

View file

@ -0,0 +1,33 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/go-skynet/LocalAI/pkg/stablediffusion"
)
type Image struct {
base.SingleThread
stablediffusion *stablediffusion.StableDiffusion
}
func (image *Image) Load(opts *pb.ModelOptions) error {
var err error
// Note: the Model here is a path to a directory containing the model files
image.stablediffusion, err = stablediffusion.New(opts.ModelFile)
return err
}
func (image *Image) GenerateImage(opts *pb.GenerateImageRequest) error {
return image.stablediffusion.GenerateImage(
int(opts.Height),
int(opts.Width),
int(opts.Mode),
int(opts.Step),
int(opts.Seed),
opts.PositivePrompt,
opts.NegativePrompt,
opts.Dst)
}

View file

@ -0,0 +1,21 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &Image{}); err != nil {
panic(err)
}
}

View file

@ -0,0 +1,32 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/go-skynet/LocalAI/pkg/tinydream"
)
type Image struct {
base.SingleThread
tinydream *tinydream.TinyDream
}
func (image *Image) Load(opts *pb.ModelOptions) error {
var err error
// Note: the Model here is a path to a directory containing the model files
image.tinydream, err = tinydream.New(opts.ModelFile)
return err
}
func (image *Image) GenerateImage(opts *pb.GenerateImageRequest) error {
return image.tinydream.GenerateImage(
int(opts.Height),
int(opts.Width),
int(opts.Step),
int(opts.Seed),
opts.PositivePrompt,
opts.NegativePrompt,
opts.Dst)
}

View file

@ -0,0 +1,34 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
bert "github.com/go-skynet/go-bert.cpp"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
)
type Embeddings struct {
base.SingleThread
bert *bert.Bert
}
func (llm *Embeddings) Load(opts *pb.ModelOptions) error {
model, err := bert.New(opts.ModelFile)
llm.bert = model
return err
}
func (llm *Embeddings) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
if len(opts.EmbeddingTokens) > 0 {
tokens := []int{}
for _, t := range opts.EmbeddingTokens {
tokens = append(tokens, int(t))
}
return llm.bert.TokenEmbeddings(tokens, bert.SetThreads(int(opts.Threads)))
}
return llm.bert.Embeddings(opts.Embeddings, bert.SetThreads(int(opts.Threads)))
}

View file

@ -0,0 +1,21 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &Embeddings{}); err != nil {
panic(err)
}
}

View file

@ -0,0 +1,62 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
gpt4all "github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
)
type LLM struct {
base.SingleThread
gpt4all *gpt4all.Model
}
func (llm *LLM) Load(opts *pb.ModelOptions) error {
model, err := gpt4all.New(opts.ModelFile,
gpt4all.SetThreads(int(opts.Threads)),
gpt4all.SetLibrarySearchPath(opts.LibrarySearchPath))
llm.gpt4all = model
return err
}
func buildPredictOptions(opts *pb.PredictOptions) []gpt4all.PredictOption {
predictOptions := []gpt4all.PredictOption{
gpt4all.SetTemperature(float64(opts.Temperature)),
gpt4all.SetTopP(float64(opts.TopP)),
gpt4all.SetTopK(int(opts.TopK)),
gpt4all.SetTokens(int(opts.Tokens)),
}
if opts.Batch != 0 {
predictOptions = append(predictOptions, gpt4all.SetBatch(int(opts.Batch)))
}
return predictOptions
}
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
return llm.gpt4all.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
predictOptions := buildPredictOptions(opts)
go func() {
llm.gpt4all.SetTokenCallback(func(token string) bool {
results <- token
return true
})
_, err := llm.gpt4all.Predict(opts.Prompt, predictOptions...)
if err != nil {
fmt.Println("err: ", err)
}
llm.gpt4all.SetTokenCallback(nil)
close(results)
}()
return nil
}

View file

@ -5,7 +5,7 @@ package main
import (
"flag"
grpc "github.com/mudler/LocalAI/pkg/grpc"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
@ -15,7 +15,7 @@ var (
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &VAD{}); err != nil {
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
panic(err)
}
}

View file

@ -4,11 +4,10 @@ package main
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"os"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/langchain"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/go-skynet/LocalAI/pkg/langchain"
)
type LLM struct {
@ -19,14 +18,9 @@ type LLM struct {
}
func (llm *LLM) Load(opts *pb.ModelOptions) error {
var err error
hfToken := os.Getenv("HUGGINGFACEHUB_API_TOKEN")
if hfToken == "" {
return fmt.Errorf("no huggingface token provided")
}
llm.langchain, err = langchain.NewHuggingFace(opts.Model, hfToken)
llm.langchain, _ = langchain.NewHuggingFace(opts.Model)
llm.model = opts.Model
return err
return nil
}
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {

View file

@ -5,7 +5,7 @@ package main
import (
"flag"
grpc "github.com/mudler/LocalAI/pkg/grpc"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (

View file

@ -0,0 +1,204 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/go-skynet/go-llama.cpp"
)
type LLM struct {
base.SingleThread
llama *llama.LLama
}
func (llm *LLM) Load(opts *pb.ModelOptions) error {
ropeFreqBase := float32(10000)
ropeFreqScale := float32(1)
if opts.RopeFreqBase != 0 {
ropeFreqBase = opts.RopeFreqBase
}
if opts.RopeFreqScale != 0 {
ropeFreqScale = opts.RopeFreqScale
}
llamaOpts := []llama.ModelOption{
llama.WithRopeFreqBase(ropeFreqBase),
llama.WithRopeFreqScale(ropeFreqScale),
}
if opts.NGQA != 0 {
llamaOpts = append(llamaOpts, llama.WithGQA(int(opts.NGQA)))
}
if opts.RMSNormEps != 0 {
llamaOpts = append(llamaOpts, llama.WithRMSNormEPS(opts.RMSNormEps))
}
if opts.ContextSize != 0 {
llamaOpts = append(llamaOpts, llama.SetContext(int(opts.ContextSize)))
}
if opts.F16Memory {
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
}
if opts.Embeddings {
llamaOpts = append(llamaOpts, llama.EnableEmbeddings)
}
if opts.NGPULayers != 0 {
llamaOpts = append(llamaOpts, llama.SetGPULayers(int(opts.NGPULayers)))
}
llamaOpts = append(llamaOpts, llama.SetMMap(opts.MMap))
llamaOpts = append(llamaOpts, llama.SetMainGPU(opts.MainGPU))
llamaOpts = append(llamaOpts, llama.SetTensorSplit(opts.TensorSplit))
if opts.NBatch != 0 {
llamaOpts = append(llamaOpts, llama.SetNBatch(int(opts.NBatch)))
} else {
llamaOpts = append(llamaOpts, llama.SetNBatch(512))
}
if opts.NUMA {
llamaOpts = append(llamaOpts, llama.EnableNUMA)
}
if opts.LowVRAM {
llamaOpts = append(llamaOpts, llama.EnabelLowVRAM)
}
model, err := llama.New(opts.ModelFile, llamaOpts...)
llm.llama = model
return err
}
func buildPredictOptions(opts *pb.PredictOptions) []llama.PredictOption {
ropeFreqBase := float32(10000)
ropeFreqScale := float32(1)
if opts.RopeFreqBase != 0 {
ropeFreqBase = opts.RopeFreqBase
}
if opts.RopeFreqScale != 0 {
ropeFreqScale = opts.RopeFreqScale
}
predictOptions := []llama.PredictOption{
llama.SetTemperature(opts.Temperature),
llama.SetTopP(opts.TopP),
llama.SetTopK(int(opts.TopK)),
llama.SetTokens(int(opts.Tokens)),
llama.SetThreads(int(opts.Threads)),
llama.WithGrammar(opts.Grammar),
llama.SetRopeFreqBase(ropeFreqBase),
llama.SetRopeFreqScale(ropeFreqScale),
llama.SetNegativePromptScale(opts.NegativePromptScale),
llama.SetNegativePrompt(opts.NegativePrompt),
}
if opts.PromptCacheAll {
predictOptions = append(predictOptions, llama.EnablePromptCacheAll)
}
if opts.PromptCacheRO {
predictOptions = append(predictOptions, llama.EnablePromptCacheRO)
}
// Expected absolute path
if opts.PromptCachePath != "" {
predictOptions = append(predictOptions, llama.SetPathPromptCache(opts.PromptCachePath))
}
if opts.Mirostat != 0 {
predictOptions = append(predictOptions, llama.SetMirostat(int(opts.Mirostat)))
}
if opts.MirostatETA != 0 {
predictOptions = append(predictOptions, llama.SetMirostatETA(opts.MirostatETA))
}
if opts.MirostatTAU != 0 {
predictOptions = append(predictOptions, llama.SetMirostatTAU(opts.MirostatTAU))
}
if opts.Debug {
predictOptions = append(predictOptions, llama.Debug)
}
predictOptions = append(predictOptions, llama.SetStopWords(opts.StopPrompts...))
if opts.PresencePenalty != 0 {
predictOptions = append(predictOptions, llama.SetPenalty(opts.PresencePenalty))
}
if opts.NKeep != 0 {
predictOptions = append(predictOptions, llama.SetNKeep(int(opts.NKeep)))
}
if opts.Batch != 0 {
predictOptions = append(predictOptions, llama.SetBatch(int(opts.Batch)))
}
if opts.F16KV {
predictOptions = append(predictOptions, llama.EnableF16KV)
}
if opts.IgnoreEOS {
predictOptions = append(predictOptions, llama.IgnoreEOS)
}
if opts.Seed != 0 {
predictOptions = append(predictOptions, llama.SetSeed(int(opts.Seed)))
}
//predictOptions = append(predictOptions, llama.SetLogitBias(c.Seed))
predictOptions = append(predictOptions, llama.SetFrequencyPenalty(opts.FrequencyPenalty))
predictOptions = append(predictOptions, llama.SetMlock(opts.MLock))
predictOptions = append(predictOptions, llama.SetMemoryMap(opts.MMap))
predictOptions = append(predictOptions, llama.SetPredictionMainGPU(opts.MainGPU))
predictOptions = append(predictOptions, llama.SetPredictionTensorSplit(opts.TensorSplit))
predictOptions = append(predictOptions, llama.SetTailFreeSamplingZ(opts.TailFreeSamplingZ))
predictOptions = append(predictOptions, llama.SetTypicalP(opts.TypicalP))
return predictOptions
}
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
return llm.llama.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
predictOptions := buildPredictOptions(opts)
predictOptions = append(predictOptions, llama.SetTokenCallback(func(token string) bool {
results <- token
return true
}))
go func() {
_, err := llm.llama.Predict(opts.Prompt, predictOptions...)
if err != nil {
fmt.Println("err: ", err)
}
close(results)
}()
return nil
}
func (llm *LLM) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
predictOptions := buildPredictOptions(opts)
if len(opts.EmbeddingTokens) > 0 {
tokens := []int{}
for _, t := range opts.EmbeddingTokens {
tokens = append(tokens, int(t))
}
return llm.llama.TokenEmbeddings(tokens, predictOptions...)
}
return llm.llama.Embeddings(opts.Embeddings, predictOptions...)
}

View file

@ -0,0 +1,19 @@
package main
import (
"flag"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
panic(err)
}
}

View file

@ -6,9 +6,9 @@ import (
"fmt"
"path/filepath"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/go-skynet/go-llama.cpp"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
)
type LLM struct {

View file

@ -7,7 +7,7 @@ package main
import (
"flag"
grpc "github.com/mudler/LocalAI/pkg/grpc"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (

View file

@ -1,10 +1,11 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
grpc "github.com/mudler/LocalAI/pkg/grpc"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
@ -14,7 +15,7 @@ var (
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &SDGGML{}); err != nil {
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
panic(err)
}
}

Some files were not shown because too many files have changed in this diff Show more