refactor: backend/service split, channel-based llm flow (#1963)

Refactor: channel based llm flow and services split

---------

Signed-off-by: Dave Lee <dave@gray101.com>
This commit is contained in:
Dave 2024-04-13 03:45:34 -04:00 committed by GitHub
parent 1981154f49
commit eed5706994
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
52 changed files with 3064 additions and 2279 deletions

View file

@ -2,9 +2,7 @@ package elevenlabs
import (
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/gofiber/fiber/v2"
@ -17,7 +15,7 @@ import (
// @Param request body schema.TTSRequest true "query params"
// @Success 200 {string} binary "Response"
// @Router /v1/text-to-speech/{voice-id} [post]
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
func TTSEndpoint(fce *fiberContext.FiberContextExtractor, ttsbs *backend.TextToSpeechBackendService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.ElevenLabsTTSRequest)
@ -28,34 +26,21 @@ func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfi
return err
}
modelFile, err := fiberContext.ModelFromContext(c, ml, input.ModelID, false)
var err error
input.ModelID, err = fce.ModelFromContext(c, input.ModelID, false)
if err != nil {
modelFile = input.ModelID
log.Warn().Msgf("Model not found in context: %s", input.ModelID)
}
cfg, err := cl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
config.LoadOptionDebug(appConfig.Debug),
config.LoadOptionThreads(appConfig.Threads),
config.LoadOptionContextSize(appConfig.ContextSize),
config.LoadOptionF16(appConfig.F16),
)
if err != nil {
modelFile = input.ModelID
log.Warn().Msgf("Model not found in context: %s", input.ModelID)
} else {
if input.ModelID != "" {
modelFile = input.ModelID
} else {
modelFile = cfg.Model
}
responseChannel := ttsbs.TextToAudioFile(&schema.TTSRequest{
Model: input.ModelID,
Voice: voiceID,
Input: input.Text,
})
rawValue := <-responseChannel
if rawValue.Error != nil {
return rawValue.Error
}
log.Debug().Msgf("Request for model: %s", modelFile)
filePath, _, err := backend.ModelTTS(cfg.Backend, input.Text, modelFile, voiceID, ml, appConfig, *cfg)
if err != nil {
return err
}
return c.Download(filePath)
return c.Download(*rawValue.Value)
}
}

View file

@ -6,7 +6,7 @@ import (
"github.com/gofiber/fiber/v2"
)
func BackendMonitorEndpoint(bm services.BackendMonitor) func(c *fiber.Ctx) error {
func BackendMonitorEndpoint(bm *services.BackendMonitorService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.BackendMonitorRequest)
@ -23,7 +23,7 @@ func BackendMonitorEndpoint(bm services.BackendMonitor) func(c *fiber.Ctx) error
}
}
func BackendShutdownEndpoint(bm services.BackendMonitor) func(c *fiber.Ctx) error {
func BackendShutdownEndpoint(bm *services.BackendMonitorService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.BackendMonitorRequest)
// Get input data from the request body

View file

@ -2,9 +2,7 @@ package localai
import (
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/gofiber/fiber/v2"
@ -16,45 +14,26 @@ import (
// @Param request body schema.TTSRequest true "query params"
// @Success 200 {string} binary "Response"
// @Router /v1/audio/speech [post]
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
func TTSEndpoint(fce *fiberContext.FiberContextExtractor, ttsbs *backend.TextToSpeechBackendService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
var err error
input := new(schema.TTSRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
if err = c.BodyParser(input); err != nil {
return err
}
modelFile, err := fiberContext.ModelFromContext(c, ml, input.Model, false)
input.Model, err = fce.ModelFromContext(c, input.Model, false)
if err != nil {
modelFile = input.Model
log.Warn().Msgf("Model not found in context: %s", input.Model)
}
cfg, err := cl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
config.LoadOptionDebug(appConfig.Debug),
config.LoadOptionThreads(appConfig.Threads),
config.LoadOptionContextSize(appConfig.ContextSize),
config.LoadOptionF16(appConfig.F16),
)
if err != nil {
modelFile = input.Model
log.Warn().Msgf("Model not found in context: %s", input.Model)
} else {
modelFile = cfg.Model
responseChannel := ttsbs.TextToAudioFile(input)
rawValue := <-responseChannel
if rawValue.Error != nil {
return rawValue.Error
}
log.Debug().Msgf("Request for model: %s", modelFile)
if input.Backend != "" {
cfg.Backend = input.Backend
}
filePath, _, err := backend.ModelTTS(cfg.Backend, input.Input, modelFile, input.Voice, ml, appConfig, *cfg)
if err != nil {
return err
}
return c.Download(filePath)
return c.Download(*rawValue.Value)
}
}

View file

@ -339,7 +339,7 @@ func CreateAssistantFileEndpoint(cl *config.BackendConfigLoader, ml *model.Model
}
}
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find "))
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find assistantID %q", assistantID))
}
}

View file

@ -5,17 +5,11 @@ import (
"bytes"
"encoding/json"
"fmt"
"strings"
"time"
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/grammar"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/go-skynet/LocalAI/core/services"
"github.com/gofiber/fiber/v2"
"github.com/google/uuid"
"github.com/rs/zerolog/log"
"github.com/valyala/fasthttp"
)
@ -25,412 +19,82 @@ import (
// @Param request body schema.OpenAIRequest true "query params"
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/chat/completions [post]
func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startupOptions *config.ApplicationConfig) func(c *fiber.Ctx) error {
emptyMessage := ""
id := uuid.New().String()
created := int(time.Now().Unix())
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
initialMessage := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
Object: "chat.completion.chunk",
}
responses <- initialMessage
ComputeChoices(req, s, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
resp := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0}},
Object: "chat.completion.chunk",
Usage: schema.OpenAIUsage{
PromptTokens: usage.Prompt,
CompletionTokens: usage.Completion,
TotalTokens: usage.Prompt + usage.Completion,
},
}
responses <- resp
return true
})
close(responses)
}
processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
result := ""
_, tokenUsage, _ := ComputeChoices(req, prompt, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
result += s
// TODO: Change generated BNF grammar to be compliant with the schema so we can
// stream the result token by token here.
return true
})
results := parseFunctionCall(result, config.FunctionsConfig.ParallelCalls)
noActionToRun := len(results) > 0 && results[0].name == noAction
switch {
case noActionToRun:
initialMessage := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
Object: "chat.completion.chunk",
}
responses <- initialMessage
result, err := handleQuestion(config, req, ml, startupOptions, results[0].arguments, prompt)
if err != nil {
log.Error().Err(err).Msg("error handling question")
return
}
resp := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0}},
Object: "chat.completion.chunk",
Usage: schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
},
}
responses <- resp
default:
for i, ss := range results {
name, args := ss.name, ss.arguments
initialMessage := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{
Delta: &schema.Message{
Role: "assistant",
ToolCalls: []schema.ToolCall{
{
Index: i,
ID: id,
Type: "function",
FunctionCall: schema.FunctionCall{
Name: name,
},
},
},
}}},
Object: "chat.completion.chunk",
}
responses <- initialMessage
responses <- schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{
Delta: &schema.Message{
Role: "assistant",
ToolCalls: []schema.ToolCall{
{
Index: i,
ID: id,
Type: "function",
FunctionCall: schema.FunctionCall{
Arguments: args,
},
},
},
}}},
Object: "chat.completion.chunk",
}
}
}
close(responses)
}
func ChatEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.OpenAIService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
processFunctions := false
funcs := grammar.Functions{}
modelFile, input, err := readRequest(c, ml, startupOptions, true)
_, request, err := fce.OpenAIRequestFromContext(c, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
return fmt.Errorf("failed reading parameters from request: %w", err)
}
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, startupOptions.Debug, startupOptions.Threads, startupOptions.ContextSize, startupOptions.F16)
traceID, finalResultChannel, _, tokenChannel, err := oais.Chat(request, false, request.Stream)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Configuration read: %+v", config)
// Allow the user to set custom actions via config file
// to be "embedded" in each model
noActionName := "answer"
noActionDescription := "use this action to answer without performing any action"
if config.FunctionsConfig.NoActionFunctionName != "" {
noActionName = config.FunctionsConfig.NoActionFunctionName
}
if config.FunctionsConfig.NoActionDescriptionName != "" {
noActionDescription = config.FunctionsConfig.NoActionDescriptionName
return err
}
if input.ResponseFormat.Type == "json_object" {
input.Grammar = grammar.JSONBNF
}
if request.Stream {
config.Grammar = input.Grammar
log.Debug().Msgf("Chat Stream request received")
// process functions if we have any defined or if we have a function call string
if len(input.Functions) > 0 && config.ShouldUseFunctions() {
log.Debug().Msgf("Response needs to process functions")
processFunctions = true
noActionGrammar := grammar.Function{
Name: noActionName,
Description: noActionDescription,
Parameters: map[string]interface{}{
"properties": map[string]interface{}{
"message": map[string]interface{}{
"type": "string",
"description": "The message to reply the user with",
}},
},
}
// Append the no action function
funcs = append(funcs, input.Functions...)
if !config.FunctionsConfig.DisableNoAction {
funcs = append(funcs, noActionGrammar)
}
// Force picking one of the functions by the request
if config.FunctionToCall() != "" {
funcs = funcs.Select(config.FunctionToCall())
}
// Update input grammar
jsStruct := funcs.ToJSONStructure()
config.Grammar = jsStruct.Grammar("", config.FunctionsConfig.ParallelCalls)
} else if input.JSONFunctionGrammarObject != nil {
config.Grammar = input.JSONFunctionGrammarObject.Grammar("", config.FunctionsConfig.ParallelCalls)
}
// functions are not supported in stream mode (yet?)
toStream := input.Stream
log.Debug().Msgf("Parameters: %+v", config)
var predInput string
// If we are using the tokenizer template, we don't need to process the messages
// unless we are processing functions
if !config.TemplateConfig.UseTokenizerTemplate || processFunctions {
suppressConfigSystemPrompt := false
mess := []string{}
for messageIndex, i := range input.Messages {
var content string
role := i.Role
// if function call, we might want to customize the role so we can display better that the "assistant called a json action"
// if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request
if (i.FunctionCall != nil || i.ToolCalls != nil) && i.Role == "assistant" {
roleFn := "assistant_function_call"
r := config.Roles[roleFn]
if r != "" {
role = roleFn
}
}
r := config.Roles[role]
contentExists := i.Content != nil && i.StringContent != ""
fcall := i.FunctionCall
if len(i.ToolCalls) > 0 {
fcall = i.ToolCalls
}
// First attempt to populate content via a chat message specific template
if config.TemplateConfig.ChatMessage != "" {
chatMessageData := model.ChatMessageTemplateData{
SystemPrompt: config.SystemPrompt,
Role: r,
RoleName: role,
Content: i.StringContent,
FunctionCall: fcall,
FunctionName: i.Name,
LastMessage: messageIndex == (len(input.Messages) - 1),
Function: config.Grammar != "" && (messageIndex == (len(input.Messages) - 1)),
MessageIndex: messageIndex,
}
templatedChatMessage, err := ml.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData)
if err != nil {
log.Error().Err(err).Interface("message", chatMessageData).Str("template", config.TemplateConfig.ChatMessage).Msg("error processing message with template, skipping")
} else {
if templatedChatMessage == "" {
log.Warn().Msgf("template \"%s\" produced blank output for %+v. Skipping!", config.TemplateConfig.ChatMessage, chatMessageData)
continue // TODO: This continue is here intentionally to skip over the line `mess = append(mess, content)` below, and to prevent the sprintf
}
log.Debug().Msgf("templated message for chat: %s", templatedChatMessage)
content = templatedChatMessage
}
}
marshalAnyRole := func(f any) {
j, err := json.Marshal(f)
if err == nil {
if contentExists {
content += "\n" + fmt.Sprint(r, " ", string(j))
} else {
content = fmt.Sprint(r, " ", string(j))
}
}
}
marshalAny := func(f any) {
j, err := json.Marshal(f)
if err == nil {
if contentExists {
content += "\n" + string(j)
} else {
content = string(j)
}
}
}
// If this model doesn't have such a template, or if that template fails to return a value, template at the message level.
if content == "" {
if r != "" {
if contentExists {
content = fmt.Sprint(r, i.StringContent)
}
if i.FunctionCall != nil {
marshalAnyRole(i.FunctionCall)
}
if i.ToolCalls != nil {
marshalAnyRole(i.ToolCalls)
}
} else {
if contentExists {
content = fmt.Sprint(i.StringContent)
}
if i.FunctionCall != nil {
marshalAny(i.FunctionCall)
}
if i.ToolCalls != nil {
marshalAny(i.ToolCalls)
}
}
// Special Handling: System. We care if it was printed at all, not the r branch, so check seperately
if contentExists && role == "system" {
suppressConfigSystemPrompt = true
}
}
mess = append(mess, content)
}
predInput = strings.Join(mess, "\n")
log.Debug().Msgf("Prompt (before templating): %s", predInput)
templateFile := ""
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
templateFile = config.Model
}
if config.TemplateConfig.Chat != "" && !processFunctions {
templateFile = config.TemplateConfig.Chat
}
if config.TemplateConfig.Functions != "" && processFunctions {
templateFile = config.TemplateConfig.Functions
}
if templateFile != "" {
templatedInput, err := ml.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
SystemPrompt: config.SystemPrompt,
SuppressSystemPrompt: suppressConfigSystemPrompt,
Input: predInput,
Functions: funcs,
})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
} else {
log.Debug().Msgf("Template failed loading: %s", err.Error())
}
}
log.Debug().Msgf("Prompt (after templating): %s", predInput)
if processFunctions {
log.Debug().Msgf("Grammar: %+v", config.Grammar)
}
}
switch {
case toStream:
log.Debug().Msgf("Stream request received")
c.Context().SetContentType("text/event-stream")
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
// c.Set("Content-Type", "text/event-stream")
//
c.Set("Cache-Control", "no-cache")
c.Set("Connection", "keep-alive")
c.Set("Transfer-Encoding", "chunked")
responses := make(chan schema.OpenAIResponse)
if !processFunctions {
go process(predInput, input, config, ml, responses)
} else {
go processTools(noActionName, predInput, input, config, ml, responses)
}
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
usage := &schema.OpenAIUsage{}
toolsCalled := false
for ev := range responses {
usage = &ev.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
if len(ev.Choices[0].Delta.ToolCalls) > 0 {
for ev := range tokenChannel {
if ev.Error != nil {
log.Debug().Err(ev.Error).Msg("chat streaming responseChannel error")
request.Cancel()
break
}
usage = &ev.Value.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
if len(ev.Value.Choices[0].Delta.ToolCalls) > 0 {
toolsCalled = true
}
var buf bytes.Buffer
enc := json.NewEncoder(&buf)
enc.Encode(ev)
log.Debug().Msgf("Sending chunk: %s", buf.String())
if ev.Error != nil {
log.Debug().Err(ev.Error).Msg("[ChatEndpoint] error to debug during tokenChannel handler")
enc.Encode(ev.Error)
} else {
enc.Encode(ev.Value)
}
log.Debug().Msgf("chat streaming sending chunk: %s", buf.String())
_, err := fmt.Fprintf(w, "data: %v\n", buf.String())
if err != nil {
log.Debug().Msgf("Sending chunk failed: %v", err)
input.Cancel()
log.Debug().Err(err).Msgf("Sending chunk failed")
request.Cancel()
break
}
err = w.Flush()
if err != nil {
log.Debug().Msg("error while flushing, closing connection")
request.Cancel()
break
}
w.Flush()
}
finishReason := "stop"
if toolsCalled {
finishReason = "tool_calls"
} else if toolsCalled && len(input.Tools) == 0 {
} else if toolsCalled && len(request.Tools) == 0 {
finishReason = "function_call"
}
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
ID: traceID.ID,
Created: traceID.Created,
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{
{
FinishReason: finishReason,
Index: 0,
Delta: &schema.Message{Content: &emptyMessage},
Delta: &schema.Message{Content: ""},
}},
Object: "chat.completion.chunk",
Usage: *usage,
@ -441,202 +105,21 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
w.WriteString("data: [DONE]\n\n")
w.Flush()
}))
return nil
// no streaming mode
default:
result, tokenUsage, err := ComputeChoices(input, predInput, config, startupOptions, ml, func(s string, c *[]schema.Choice) {
if !processFunctions {
// no function is called, just reply and use stop as finish reason
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
return
}
results := parseFunctionCall(s, config.FunctionsConfig.ParallelCalls)
noActionsToRun := len(results) > 0 && results[0].name == noActionName
switch {
case noActionsToRun:
result, err := handleQuestion(config, input, ml, startupOptions, results[0].arguments, predInput)
if err != nil {
log.Error().Err(err).Msg("error handling question")
return
}
*c = append(*c, schema.Choice{
Message: &schema.Message{Role: "assistant", Content: &result}})
default:
toolChoice := schema.Choice{
Message: &schema.Message{
Role: "assistant",
},
}
if len(input.Tools) > 0 {
toolChoice.FinishReason = "tool_calls"
}
for _, ss := range results {
name, args := ss.name, ss.arguments
if len(input.Tools) > 0 {
// If we are using tools, we condense the function calls into
// a single response choice with all the tools
toolChoice.Message.ToolCalls = append(toolChoice.Message.ToolCalls,
schema.ToolCall{
ID: id,
Type: "function",
FunctionCall: schema.FunctionCall{
Name: name,
Arguments: args,
},
},
)
} else {
// otherwise we return more choices directly
*c = append(*c, schema.Choice{
FinishReason: "function_call",
Message: &schema.Message{
Role: "assistant",
FunctionCall: map[string]interface{}{
"name": name,
"arguments": args,
},
},
})
}
}
if len(input.Tools) > 0 {
// we need to append our result if we are using tools
*c = append(*c, toolChoice)
}
}
}, nil)
if err != nil {
return err
}
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "chat.completion",
Usage: schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
},
}
respData, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", respData)
// Return the prediction in the response body
return c.JSON(resp)
}
// TODO is this proper to have exclusive from Stream, or do we need to issue both responses?
rawResponse := <-finalResultChannel
if rawResponse.Error != nil {
return rawResponse.Error
}
jsonResult, _ := json.Marshal(rawResponse.Value)
log.Debug().Str("jsonResult", string(jsonResult)).Msg("Chat Final Response")
// Return the prediction in the response body
return c.JSON(rawResponse.Value)
}
}
func handleQuestion(config *config.BackendConfig, input *schema.OpenAIRequest, ml *model.ModelLoader, o *config.ApplicationConfig, args, prompt string) (string, error) {
log.Debug().Msgf("nothing to do, computing a reply")
// If there is a message that the LLM already sends as part of the JSON reply, use it
arguments := map[string]interface{}{}
json.Unmarshal([]byte(args), &arguments)
m, exists := arguments["message"]
if exists {
switch message := m.(type) {
case string:
if message != "" {
log.Debug().Msgf("Reply received from LLM: %s", message)
message = backend.Finetune(*config, prompt, message)
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
return message, nil
}
}
}
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
// Note: This costs (in term of CPU/GPU) another computation
config.Grammar = ""
images := []string{}
for _, m := range input.Messages {
images = append(images, m.StringImages...)
}
predFunc, err := backend.ModelInference(input.Context, prompt, input.Messages, images, ml, *config, o, nil)
if err != nil {
log.Error().Err(err).Msg("model inference failed")
return "", err
}
prediction, err := predFunc()
if err != nil {
log.Error().Err(err).Msg("prediction failed")
return "", err
}
return backend.Finetune(*config, prompt, prediction.Response), nil
}
type funcCallResults struct {
name string
arguments string
}
func parseFunctionCall(llmresult string, multipleResults bool) []funcCallResults {
results := []funcCallResults{}
// TODO: use generics to avoid this code duplication
if multipleResults {
ss := []map[string]interface{}{}
s := utils.EscapeNewLines(llmresult)
json.Unmarshal([]byte(s), &ss)
log.Debug().Msgf("Function return: %s %+v", s, ss)
for _, s := range ss {
func_name, ok := s["function"]
if !ok {
continue
}
args, ok := s["arguments"]
if !ok {
continue
}
d, _ := json.Marshal(args)
funcName, ok := func_name.(string)
if !ok {
continue
}
results = append(results, funcCallResults{name: funcName, arguments: string(d)})
}
} else {
// As we have to change the result before processing, we can't stream the answer token-by-token (yet?)
ss := map[string]interface{}{}
// This prevent newlines to break JSON parsing for clients
s := utils.EscapeNewLines(llmresult)
json.Unmarshal([]byte(s), &ss)
log.Debug().Msgf("Function return: %s %+v", s, ss)
// The grammar defines the function name as "function", while OpenAI returns "name"
func_name, ok := ss["function"]
if !ok {
return results
}
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
args, ok := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
if !ok {
return results
}
d, _ := json.Marshal(args)
funcName, ok := func_name.(string)
if !ok {
return results
}
results = append(results, funcCallResults{name: funcName, arguments: string(d)})
}
return results
}

View file

@ -4,18 +4,13 @@ import (
"bufio"
"bytes"
"encoding/json"
"errors"
"fmt"
"time"
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/go-skynet/LocalAI/core/services"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/grammar"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/google/uuid"
"github.com/rs/zerolog/log"
"github.com/valyala/fasthttp"
)
@ -25,116 +20,50 @@ import (
// @Param request body schema.OpenAIRequest true "query params"
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/completions [post]
func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
id := uuid.New().String()
created := int(time.Now().Unix())
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
ComputeChoices(req, s, config, appConfig, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
resp := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{
{
Index: 0,
Text: s,
},
},
Object: "text_completion",
Usage: schema.OpenAIUsage{
PromptTokens: usage.Prompt,
CompletionTokens: usage.Completion,
TotalTokens: usage.Prompt + usage.Completion,
},
}
log.Debug().Msgf("Sending goroutine: %s", s)
responses <- resp
return true
})
close(responses)
}
func CompletionEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.OpenAIService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
modelFile, input, err := readRequest(c, ml, appConfig, true)
_, request, err := fce.OpenAIRequestFromContext(c, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("`input`: %+v", input)
log.Debug().Msgf("`OpenAIRequest`: %+v", request)
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
traceID, finalResultChannel, _, _, tokenChannel, err := oais.Completion(request, false, request.Stream)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
return err
}
if input.ResponseFormat.Type == "json_object" {
input.Grammar = grammar.JSONBNF
}
if request.Stream {
log.Debug().Msgf("Completion Stream request received")
config.Grammar = input.Grammar
log.Debug().Msgf("Parameter Config: %+v", config)
if input.Stream {
log.Debug().Msgf("Stream request received")
c.Context().SetContentType("text/event-stream")
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
//c.Set("Content-Type", "text/event-stream")
c.Set("Cache-Control", "no-cache")
c.Set("Connection", "keep-alive")
c.Set("Transfer-Encoding", "chunked")
}
templateFile := ""
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
templateFile = config.Model
}
if config.TemplateConfig.Completion != "" {
templateFile = config.TemplateConfig.Completion
}
if input.Stream {
if len(config.PromptStrings) > 1 {
return errors.New("cannot handle more than 1 `PromptStrings` when Streaming")
}
predInput := config.PromptStrings[0]
if templateFile != "" {
templatedInput, err := ml.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
Input: predInput,
})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
}
}
responses := make(chan schema.OpenAIResponse)
go process(predInput, input, config, ml, responses)
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
for ev := range responses {
for ev := range tokenChannel {
var buf bytes.Buffer
enc := json.NewEncoder(&buf)
enc.Encode(ev)
if ev.Error != nil {
log.Debug().Msgf("[CompletionEndpoint] error to debug during tokenChannel handler: %q", ev.Error)
enc.Encode(ev.Error)
} else {
enc.Encode(ev.Value)
}
log.Debug().Msgf("Sending chunk: %s", buf.String())
log.Debug().Msgf("completion streaming sending chunk: %s", buf.String())
fmt.Fprintf(w, "data: %v\n", buf.String())
w.Flush()
}
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
ID: traceID.ID,
Created: traceID.Created,
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{
{
Index: 0,
@ -151,55 +80,15 @@ func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, a
}))
return nil
}
var result []schema.Choice
totalTokenUsage := backend.TokenUsage{}
for k, i := range config.PromptStrings {
if templateFile != "" {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := ml.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
SystemPrompt: config.SystemPrompt,
Input: i,
})
if err == nil {
i = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", i)
}
}
r, tokenUsage, err := ComputeChoices(
input, i, config, appConfig, ml, func(s string, c *[]schema.Choice) {
*c = append(*c, schema.Choice{Text: s, FinishReason: "stop", Index: k})
}, nil)
if err != nil {
return err
}
totalTokenUsage.Prompt += tokenUsage.Prompt
totalTokenUsage.Completion += tokenUsage.Completion
result = append(result, r...)
// TODO is this proper to have exclusive from Stream, or do we need to issue both responses?
rawResponse := <-finalResultChannel
if rawResponse.Error != nil {
return rawResponse.Error
}
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "text_completion",
Usage: schema.OpenAIUsage{
PromptTokens: totalTokenUsage.Prompt,
CompletionTokens: totalTokenUsage.Completion,
TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion,
},
}
jsonResult, _ := json.Marshal(resp)
jsonResult, _ := json.Marshal(rawResponse.Value)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
return c.JSON(rawResponse.Value)
}
}

View file

@ -3,92 +3,36 @@ package openai
import (
"encoding/json"
"fmt"
"time"
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/go-skynet/LocalAI/core/services"
"github.com/go-skynet/LocalAI/core/schema"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/google/uuid"
"github.com/rs/zerolog/log"
)
func EditEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
func EditEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.OpenAIService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
modelFile, input, err := readRequest(c, ml, appConfig, true)
_, request, err := fce.OpenAIRequestFromContext(c, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
_, finalResultChannel, _, _, _, err := oais.Edit(request, false, request.Stream)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
return err
}
log.Debug().Msgf("Parameter Config: %+v", config)
templateFile := ""
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
templateFile = config.Model
rawResponse := <-finalResultChannel
if rawResponse.Error != nil {
return rawResponse.Error
}
if config.TemplateConfig.Edit != "" {
templateFile = config.TemplateConfig.Edit
}
var result []schema.Choice
totalTokenUsage := backend.TokenUsage{}
for _, i := range config.InputStrings {
if templateFile != "" {
templatedInput, err := ml.EvaluateTemplateForPrompt(model.EditPromptTemplate, templateFile, model.PromptTemplateData{
Input: i,
Instruction: input.Instruction,
SystemPrompt: config.SystemPrompt,
})
if err == nil {
i = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", i)
}
}
r, tokenUsage, err := ComputeChoices(input, i, config, appConfig, ml, func(s string, c *[]schema.Choice) {
*c = append(*c, schema.Choice{Text: s})
}, nil)
if err != nil {
return err
}
totalTokenUsage.Prompt += tokenUsage.Prompt
totalTokenUsage.Completion += tokenUsage.Completion
result = append(result, r...)
}
id := uuid.New().String()
created := int(time.Now().Unix())
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "edit",
Usage: schema.OpenAIUsage{
PromptTokens: totalTokenUsage.Prompt,
CompletionTokens: totalTokenUsage.Completion,
TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion,
},
}
jsonResult, _ := json.Marshal(resp)
jsonResult, _ := json.Marshal(rawResponse.Value)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
return c.JSON(rawResponse.Value)
}
}

View file

@ -3,14 +3,9 @@ package openai
import (
"encoding/json"
"fmt"
"time"
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/google/uuid"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
@ -21,63 +16,25 @@ import (
// @Param request body schema.OpenAIRequest true "query params"
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/embeddings [post]
func EmbeddingsEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
func EmbeddingsEndpoint(fce *fiberContext.FiberContextExtractor, ebs *backend.EmbeddingsBackendService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readRequest(c, ml, appConfig, true)
_, input, err := fce.OpenAIRequestFromContext(c, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := mergeRequestWithConfig(model, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
responseChannel := ebs.Embeddings(input)
rawResponse := <-responseChannel
if rawResponse.Error != nil {
return rawResponse.Error
}
log.Debug().Msgf("Parameter Config: %+v", config)
items := []schema.Item{}
for i, s := range config.InputToken {
// get the model function to call for the result
embedFn, err := backend.ModelEmbedding("", s, ml, *config, appConfig)
if err != nil {
return err
}
embeddings, err := embedFn()
if err != nil {
return err
}
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
for i, s := range config.InputStrings {
// get the model function to call for the result
embedFn, err := backend.ModelEmbedding(s, []int{}, ml, *config, appConfig)
if err != nil {
return err
}
embeddings, err := embedFn()
if err != nil {
return err
}
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
id := uuid.New().String()
created := int(time.Now().Unix())
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Data: items,
Object: "list",
}
jsonResult, _ := json.Marshal(resp)
jsonResult, _ := json.Marshal(rawResponse.Value)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
return c.JSON(rawResponse.Value)
}
}

View file

@ -1,50 +1,18 @@
package openai
import (
"bufio"
"encoding/base64"
"encoding/json"
"fmt"
"io"
"net/http"
"os"
"path/filepath"
"strconv"
"strings"
"time"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/google/uuid"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/go-skynet/LocalAI/core/backend"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
func downloadFile(url string) (string, error) {
// Get the data
resp, err := http.Get(url)
if err != nil {
return "", err
}
defer resp.Body.Close()
// Create the file
out, err := os.CreateTemp("", "image")
if err != nil {
return "", err
}
defer out.Close()
// Write the body to file
_, err = io.Copy(out, resp.Body)
return out.Name(), err
}
//
// https://platform.openai.com/docs/api-reference/images/create
/*
*
@ -59,186 +27,36 @@ func downloadFile(url string) (string, error) {
*
*/
// ImageEndpoint is the OpenAI Image generation API endpoint https://platform.openai.com/docs/api-reference/images/create
// @Summary Creates an image given a prompt.
// @Param request body schema.OpenAIRequest true "query params"
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/images/generations [post]
func ImageEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
func ImageEndpoint(fce *fiberContext.FiberContextExtractor, igbs *backend.ImageGenerationBackendService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readRequest(c, ml, appConfig, false)
// TODO: Somewhat a hack. Is there a better place to assign this?
if igbs.BaseUrlForGeneratedImages == "" {
igbs.BaseUrlForGeneratedImages = c.BaseURL() + "/generated-images/"
}
_, request, err := fce.OpenAIRequestFromContext(c, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
if m == "" {
m = model.StableDiffusionBackend
}
log.Debug().Msgf("Loading model: %+v", m)
responseChannel := igbs.GenerateImage(request)
rawResponse := <-responseChannel
config, input, err := mergeRequestWithConfig(m, input, cl, ml, appConfig.Debug, 0, 0, false)
if rawResponse.Error != nil {
return rawResponse.Error
}
jsonResult, err := json.Marshal(rawResponse.Value)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
return err
}
src := ""
if input.File != "" {
fileData := []byte{}
// check if input.File is an URL, if so download it and save it
// to a temporary file
if strings.HasPrefix(input.File, "http://") || strings.HasPrefix(input.File, "https://") {
out, err := downloadFile(input.File)
if err != nil {
return fmt.Errorf("failed downloading file:%w", err)
}
defer os.RemoveAll(out)
fileData, err = os.ReadFile(out)
if err != nil {
return fmt.Errorf("failed reading file:%w", err)
}
} else {
// base 64 decode the file and write it somewhere
// that we will cleanup
fileData, err = base64.StdEncoding.DecodeString(input.File)
if err != nil {
return err
}
}
// Create a temporary file
outputFile, err := os.CreateTemp(appConfig.ImageDir, "b64")
if err != nil {
return err
}
// write the base64 result
writer := bufio.NewWriter(outputFile)
_, err = writer.Write(fileData)
if err != nil {
outputFile.Close()
return err
}
outputFile.Close()
src = outputFile.Name()
defer os.RemoveAll(src)
}
log.Debug().Msgf("Parameter Config: %+v", config)
switch config.Backend {
case "stablediffusion":
config.Backend = model.StableDiffusionBackend
case "tinydream":
config.Backend = model.TinyDreamBackend
case "":
config.Backend = model.StableDiffusionBackend
}
sizeParts := strings.Split(input.Size, "x")
if len(sizeParts) != 2 {
return fmt.Errorf("invalid value for 'size'")
}
width, err := strconv.Atoi(sizeParts[0])
if err != nil {
return fmt.Errorf("invalid value for 'size'")
}
height, err := strconv.Atoi(sizeParts[1])
if err != nil {
return fmt.Errorf("invalid value for 'size'")
}
b64JSON := false
if input.ResponseFormat.Type == "b64_json" {
b64JSON = true
}
// src and clip_skip
var result []schema.Item
for _, i := range config.PromptStrings {
n := input.N
if input.N == 0 {
n = 1
}
for j := 0; j < n; j++ {
prompts := strings.Split(i, "|")
positive_prompt := prompts[0]
negative_prompt := ""
if len(prompts) > 1 {
negative_prompt = prompts[1]
}
mode := 0
step := config.Step
if step == 0 {
step = 15
}
if input.Mode != 0 {
mode = input.Mode
}
if input.Step != 0 {
step = input.Step
}
tempDir := ""
if !b64JSON {
tempDir = appConfig.ImageDir
}
// Create a temporary file
outputFile, err := os.CreateTemp(tempDir, "b64")
if err != nil {
return err
}
outputFile.Close()
output := outputFile.Name() + ".png"
// Rename the temporary file
err = os.Rename(outputFile.Name(), output)
if err != nil {
return err
}
baseURL := c.BaseURL()
fn, err := backend.ImageGeneration(height, width, mode, step, *config.Seed, positive_prompt, negative_prompt, src, output, ml, *config, appConfig)
if err != nil {
return err
}
if err := fn(); err != nil {
return err
}
item := &schema.Item{}
if b64JSON {
defer os.RemoveAll(output)
data, err := os.ReadFile(output)
if err != nil {
return err
}
item.B64JSON = base64.StdEncoding.EncodeToString(data)
} else {
base := filepath.Base(output)
item.URL = baseURL + "/generated-images/" + base
}
result = append(result, *item)
}
}
id := uuid.New().String()
created := int(time.Now().Unix())
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Data: result,
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
return c.JSON(rawResponse.Value)
}
}

View file

@ -1,55 +0,0 @@
package openai
import (
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
model "github.com/go-skynet/LocalAI/pkg/model"
)
func ComputeChoices(
req *schema.OpenAIRequest,
predInput string,
config *config.BackendConfig,
o *config.ApplicationConfig,
loader *model.ModelLoader,
cb func(string, *[]schema.Choice),
tokenCallback func(string, backend.TokenUsage) bool) ([]schema.Choice, backend.TokenUsage, error) {
n := req.N // number of completions to return
result := []schema.Choice{}
if n == 0 {
n = 1
}
images := []string{}
for _, m := range req.Messages {
images = append(images, m.StringImages...)
}
// get the model function to call for the result
predFunc, err := backend.ModelInference(req.Context, predInput, req.Messages, images, loader, *config, o, tokenCallback)
if err != nil {
return result, backend.TokenUsage{}, err
}
tokenUsage := backend.TokenUsage{}
for i := 0; i < n; i++ {
prediction, err := predFunc()
if err != nil {
return result, backend.TokenUsage{}, err
}
tokenUsage.Prompt += prediction.Usage.Prompt
tokenUsage.Completion += prediction.Usage.Completion
finetunedResponse := backend.Finetune(*config, predInput, prediction.Response)
cb(finetunedResponse, &result)
//result = append(result, Choice{Text: prediction})
}
return result, tokenUsage, err
}

View file

@ -1,61 +1,21 @@
package openai
import (
"regexp"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/core/services"
"github.com/gofiber/fiber/v2"
)
func ListModelsEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader) func(ctx *fiber.Ctx) error {
func ListModelsEndpoint(lms *services.ListModelsService) func(ctx *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
models, err := ml.ListModels()
if err != nil {
return err
}
var mm map[string]interface{} = map[string]interface{}{}
dataModels := []schema.OpenAIModel{}
var filterFn func(name string) bool
// If blank, no filter is applied.
filter := c.Query("filter")
// If filter is not specified, do not filter the list by model name
if filter == "" {
filterFn = func(_ string) bool { return true }
} else {
// If filter _IS_ specified, we compile it to a regex which is used to create the filterFn
rxp, err := regexp.Compile(filter)
if err != nil {
return err
}
filterFn = func(name string) bool {
return rxp.MatchString(name)
}
}
// By default, exclude any loose files that are already referenced by a configuration file.
excludeConfigured := c.QueryBool("excludeConfigured", true)
// Start with the known configurations
for _, c := range cl.GetAllBackendConfigs() {
if excludeConfigured {
mm[c.Model] = nil
}
if filterFn(c.Name) {
dataModels = append(dataModels, schema.OpenAIModel{ID: c.Name, Object: "model"})
}
}
// Then iterate through the loose files:
for _, m := range models {
// And only adds them if they shouldn't be skipped.
if _, exists := mm[m]; !exists && filterFn(m) {
dataModels = append(dataModels, schema.OpenAIModel{ID: m, Object: "model"})
}
dataModels, err := lms.ListModels(filter, excludeConfigured)
if err != nil {
return err
}
return c.JSON(struct {

View file

@ -1,285 +0,0 @@
package openai
import (
"context"
"encoding/base64"
"encoding/json"
"fmt"
"io"
"net/http"
"strings"
"github.com/go-skynet/LocalAI/core/config"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/grammar"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
func readRequest(c *fiber.Ctx, ml *model.ModelLoader, o *config.ApplicationConfig, firstModel bool) (string, *schema.OpenAIRequest, error) {
input := new(schema.OpenAIRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return "", nil, fmt.Errorf("failed parsing request body: %w", err)
}
received, _ := json.Marshal(input)
ctx, cancel := context.WithCancel(o.Context)
input.Context = ctx
input.Cancel = cancel
log.Debug().Msgf("Request received: %s", string(received))
modelFile, err := fiberContext.ModelFromContext(c, ml, input.Model, firstModel)
return modelFile, input, err
}
// this function check if the string is an URL, if it's an URL downloads the image in memory
// encodes it in base64 and returns the base64 string
func getBase64Image(s string) (string, error) {
if strings.HasPrefix(s, "http") {
// download the image
resp, err := http.Get(s)
if err != nil {
return "", err
}
defer resp.Body.Close()
// read the image data into memory
data, err := io.ReadAll(resp.Body)
if err != nil {
return "", err
}
// encode the image data in base64
encoded := base64.StdEncoding.EncodeToString(data)
// return the base64 string
return encoded, nil
}
// if the string instead is prefixed with "data:image/jpeg;base64,", drop it
if strings.HasPrefix(s, "data:image/jpeg;base64,") {
return strings.ReplaceAll(s, "data:image/jpeg;base64,", ""), nil
}
return "", fmt.Errorf("not valid string")
}
func updateRequestConfig(config *config.BackendConfig, input *schema.OpenAIRequest) {
if input.Echo {
config.Echo = input.Echo
}
if input.TopK != nil {
config.TopK = input.TopK
}
if input.TopP != nil {
config.TopP = input.TopP
}
if input.Backend != "" {
config.Backend = input.Backend
}
if input.ClipSkip != 0 {
config.Diffusers.ClipSkip = input.ClipSkip
}
if input.ModelBaseName != "" {
config.AutoGPTQ.ModelBaseName = input.ModelBaseName
}
if input.NegativePromptScale != 0 {
config.NegativePromptScale = input.NegativePromptScale
}
if input.UseFastTokenizer {
config.UseFastTokenizer = input.UseFastTokenizer
}
if input.NegativePrompt != "" {
config.NegativePrompt = input.NegativePrompt
}
if input.RopeFreqBase != 0 {
config.RopeFreqBase = input.RopeFreqBase
}
if input.RopeFreqScale != 0 {
config.RopeFreqScale = input.RopeFreqScale
}
if input.Grammar != "" {
config.Grammar = input.Grammar
}
if input.Temperature != nil {
config.Temperature = input.Temperature
}
if input.Maxtokens != nil {
config.Maxtokens = input.Maxtokens
}
switch stop := input.Stop.(type) {
case string:
if stop != "" {
config.StopWords = append(config.StopWords, stop)
}
case []interface{}:
for _, pp := range stop {
if s, ok := pp.(string); ok {
config.StopWords = append(config.StopWords, s)
}
}
}
if len(input.Tools) > 0 {
for _, tool := range input.Tools {
input.Functions = append(input.Functions, tool.Function)
}
}
if input.ToolsChoice != nil {
var toolChoice grammar.Tool
switch content := input.ToolsChoice.(type) {
case string:
_ = json.Unmarshal([]byte(content), &toolChoice)
case map[string]interface{}:
dat, _ := json.Marshal(content)
_ = json.Unmarshal(dat, &toolChoice)
}
input.FunctionCall = map[string]interface{}{
"name": toolChoice.Function.Name,
}
}
// Decode each request's message content
index := 0
for i, m := range input.Messages {
switch content := m.Content.(type) {
case string:
input.Messages[i].StringContent = content
case []interface{}:
dat, _ := json.Marshal(content)
c := []schema.Content{}
json.Unmarshal(dat, &c)
for _, pp := range c {
if pp.Type == "text" {
input.Messages[i].StringContent = pp.Text
} else if pp.Type == "image_url" {
// Detect if pp.ImageURL is an URL, if it is download the image and encode it in base64:
base64, err := getBase64Image(pp.ImageURL.URL)
if err == nil {
input.Messages[i].StringImages = append(input.Messages[i].StringImages, base64) // TODO: make sure that we only return base64 stuff
// set a placeholder for each image
input.Messages[i].StringContent = fmt.Sprintf("[img-%d]", index) + input.Messages[i].StringContent
index++
} else {
fmt.Print("Failed encoding image", err)
}
}
}
}
}
if input.RepeatPenalty != 0 {
config.RepeatPenalty = input.RepeatPenalty
}
if input.FrequencyPenalty != 0 {
config.FrequencyPenalty = input.FrequencyPenalty
}
if input.PresencePenalty != 0 {
config.PresencePenalty = input.PresencePenalty
}
if input.Keep != 0 {
config.Keep = input.Keep
}
if input.Batch != 0 {
config.Batch = input.Batch
}
if input.IgnoreEOS {
config.IgnoreEOS = input.IgnoreEOS
}
if input.Seed != nil {
config.Seed = input.Seed
}
if input.TypicalP != nil {
config.TypicalP = input.TypicalP
}
switch inputs := input.Input.(type) {
case string:
if inputs != "" {
config.InputStrings = append(config.InputStrings, inputs)
}
case []interface{}:
for _, pp := range inputs {
switch i := pp.(type) {
case string:
config.InputStrings = append(config.InputStrings, i)
case []interface{}:
tokens := []int{}
for _, ii := range i {
tokens = append(tokens, int(ii.(float64)))
}
config.InputToken = append(config.InputToken, tokens)
}
}
}
// Can be either a string or an object
switch fnc := input.FunctionCall.(type) {
case string:
if fnc != "" {
config.SetFunctionCallString(fnc)
}
case map[string]interface{}:
var name string
n, exists := fnc["name"]
if exists {
nn, e := n.(string)
if e {
name = nn
}
}
config.SetFunctionCallNameString(name)
}
switch p := input.Prompt.(type) {
case string:
config.PromptStrings = append(config.PromptStrings, p)
case []interface{}:
for _, pp := range p {
if s, ok := pp.(string); ok {
config.PromptStrings = append(config.PromptStrings, s)
}
}
}
}
func mergeRequestWithConfig(modelFile string, input *schema.OpenAIRequest, cm *config.BackendConfigLoader, loader *model.ModelLoader, debug bool, threads, ctx int, f16 bool) (*config.BackendConfig, *schema.OpenAIRequest, error) {
cfg, err := cm.LoadBackendConfigFileByName(modelFile, loader.ModelPath,
config.LoadOptionDebug(debug),
config.LoadOptionThreads(threads),
config.LoadOptionContextSize(ctx),
config.LoadOptionF16(f16),
)
// Set the parameters for the language model prediction
updateRequestConfig(cfg, input)
return cfg, input, err
}

View file

@ -9,8 +9,7 @@ import (
"path/filepath"
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
model "github.com/go-skynet/LocalAI/pkg/model"
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
@ -23,17 +22,15 @@ import (
// @Param file formData file true "file"
// @Success 200 {object} map[string]string "Response"
// @Router /v1/audio/transcriptions [post]
func TranscriptEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
func TranscriptEndpoint(fce *fiberContext.FiberContextExtractor, tbs *backend.TranscriptionBackendService) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readRequest(c, ml, appConfig, false)
_, request, err := fce.OpenAIRequestFromContext(c, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := mergeRequestWithConfig(m, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
// TODO: Investigate this file copy stuff later - potentially belongs in service.
// retrieve the file data from the request
file, err := c.FormFile("file")
if err != nil {
@ -65,13 +62,16 @@ func TranscriptEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, a
log.Debug().Msgf("Audio file copied to: %+v", dst)
tr, err := backend.ModelTranscription(dst, input.Language, ml, *config, appConfig)
if err != nil {
return err
}
request.File = dst
log.Debug().Msgf("Trascribed: %+v", tr)
responseChannel := tbs.Transcribe(request)
rawResponse := <-responseChannel
if rawResponse.Error != nil {
return rawResponse.Error
}
log.Debug().Msgf("Transcribed: %+v", rawResponse.Value)
// TODO: handle different outputs here
return c.Status(http.StatusOK).JSON(tr)
return c.Status(http.StatusOK).JSON(rawResponse.Value)
}
}