refactor: backend/service split, channel-based llm flow (#1963)

Refactor: channel based llm flow and services split

---------

Signed-off-by: Dave Lee <dave@gray101.com>
This commit is contained in:
Dave 2024-04-13 03:45:34 -04:00 committed by GitHub
parent 1981154f49
commit eed5706994
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
52 changed files with 3064 additions and 2279 deletions

View file

@ -2,14 +2,100 @@ package backend
import (
"fmt"
"time"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/google/uuid"
"github.com/go-skynet/LocalAI/pkg/concurrency"
"github.com/go-skynet/LocalAI/pkg/grpc"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/model"
)
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() ([]float32, error), error) {
type EmbeddingsBackendService struct {
ml *model.ModelLoader
bcl *config.BackendConfigLoader
appConfig *config.ApplicationConfig
}
func NewEmbeddingsBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *EmbeddingsBackendService {
return &EmbeddingsBackendService{
ml: ml,
bcl: bcl,
appConfig: appConfig,
}
}
func (ebs *EmbeddingsBackendService) Embeddings(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.OpenAIResponse] {
resultChannel := make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
go func(request *schema.OpenAIRequest) {
if request.Model == "" {
request.Model = model.StableDiffusionBackend
}
bc, request, err := ebs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, ebs.appConfig)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
items := []schema.Item{}
for i, s := range bc.InputToken {
// get the model function to call for the result
embedFn, err := modelEmbedding("", s, ebs.ml, bc, ebs.appConfig)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
embeddings, err := embedFn()
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
for i, s := range bc.InputStrings {
// get the model function to call for the result
embedFn, err := modelEmbedding(s, []int{}, ebs.ml, bc, ebs.appConfig)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
embeddings, err := embedFn()
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
id := uuid.New().String()
created := int(time.Now().Unix())
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
Data: items,
Object: "list",
}
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: resp}
close(resultChannel)
}(request)
return resultChannel
}
func modelEmbedding(s string, tokens []int, loader *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (func() ([]float32, error), error) {
modelFile := backendConfig.Model
grpcOpts := gRPCModelOpts(backendConfig)

View file

@ -1,18 +1,252 @@
package backend
import (
"github.com/go-skynet/LocalAI/core/config"
"bufio"
"encoding/base64"
"fmt"
"io"
"net/http"
"os"
"path/filepath"
"strconv"
"strings"
"time"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/google/uuid"
"github.com/rs/zerolog/log"
"github.com/go-skynet/LocalAI/pkg/concurrency"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/model"
)
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() error, error) {
type ImageGenerationBackendService struct {
ml *model.ModelLoader
bcl *config.BackendConfigLoader
appConfig *config.ApplicationConfig
BaseUrlForGeneratedImages string
}
func NewImageGenerationBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *ImageGenerationBackendService {
return &ImageGenerationBackendService{
ml: ml,
bcl: bcl,
appConfig: appConfig,
}
}
func (igbs *ImageGenerationBackendService) GenerateImage(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.OpenAIResponse] {
resultChannel := make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
go func(request *schema.OpenAIRequest) {
bc, request, err := igbs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, igbs.appConfig)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
src := ""
if request.File != "" {
var fileData []byte
// check if input.File is an URL, if so download it and save it
// to a temporary file
if strings.HasPrefix(request.File, "http://") || strings.HasPrefix(request.File, "https://") {
out, err := downloadFile(request.File)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("failed downloading file:%w", err)}
close(resultChannel)
return
}
defer os.RemoveAll(out)
fileData, err = os.ReadFile(out)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("failed reading file:%w", err)}
close(resultChannel)
return
}
} else {
// base 64 decode the file and write it somewhere
// that we will cleanup
fileData, err = base64.StdEncoding.DecodeString(request.File)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
}
// Create a temporary file
outputFile, err := os.CreateTemp(igbs.appConfig.ImageDir, "b64")
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
// write the base64 result
writer := bufio.NewWriter(outputFile)
_, err = writer.Write(fileData)
if err != nil {
outputFile.Close()
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
outputFile.Close()
src = outputFile.Name()
defer os.RemoveAll(src)
}
log.Debug().Msgf("Parameter Config: %+v", bc)
switch bc.Backend {
case "stablediffusion":
bc.Backend = model.StableDiffusionBackend
case "tinydream":
bc.Backend = model.TinyDreamBackend
case "":
bc.Backend = model.StableDiffusionBackend
if bc.Model == "" {
bc.Model = "stablediffusion_assets" // TODO: check?
}
}
sizeParts := strings.Split(request.Size, "x")
if len(sizeParts) != 2 {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
close(resultChannel)
return
}
width, err := strconv.Atoi(sizeParts[0])
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
close(resultChannel)
return
}
height, err := strconv.Atoi(sizeParts[1])
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
close(resultChannel)
return
}
b64JSON := false
if request.ResponseFormat.Type == "b64_json" {
b64JSON = true
}
// src and clip_skip
var result []schema.Item
for _, i := range bc.PromptStrings {
n := request.N
if request.N == 0 {
n = 1
}
for j := 0; j < n; j++ {
prompts := strings.Split(i, "|")
positive_prompt := prompts[0]
negative_prompt := ""
if len(prompts) > 1 {
negative_prompt = prompts[1]
}
mode := 0
step := bc.Step
if step == 0 {
step = 15
}
if request.Mode != 0 {
mode = request.Mode
}
if request.Step != 0 {
step = request.Step
}
tempDir := ""
if !b64JSON {
tempDir = igbs.appConfig.ImageDir
}
// Create a temporary file
outputFile, err := os.CreateTemp(tempDir, "b64")
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
outputFile.Close()
output := outputFile.Name() + ".png"
// Rename the temporary file
err = os.Rename(outputFile.Name(), output)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
if request.Seed == nil {
zVal := 0 // Idiomatic way to do this? Actually needed?
request.Seed = &zVal
}
fn, err := imageGeneration(height, width, mode, step, *request.Seed, positive_prompt, negative_prompt, src, output, igbs.ml, bc, igbs.appConfig)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
if err := fn(); err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
item := &schema.Item{}
if b64JSON {
defer os.RemoveAll(output)
data, err := os.ReadFile(output)
if err != nil {
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
close(resultChannel)
return
}
item.B64JSON = base64.StdEncoding.EncodeToString(data)
} else {
base := filepath.Base(output)
item.URL = igbs.BaseUrlForGeneratedImages + base
}
result = append(result, *item)
}
}
id := uuid.New().String()
created := int(time.Now().Unix())
resp := &schema.OpenAIResponse{
ID: id,
Created: created,
Data: result,
}
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: resp}
close(resultChannel)
}(request)
return resultChannel
}
func imageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (func() error, error) {
threads := backendConfig.Threads
if *threads == 0 && appConfig.Threads != 0 {
threads = &appConfig.Threads
}
gRPCOpts := gRPCModelOpts(backendConfig)
opts := modelOpts(backendConfig, appConfig, []model.Option{
model.WithBackendString(backendConfig.Backend),
model.WithAssetDir(appConfig.AssetsDestination),
@ -50,3 +284,24 @@ func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negat
return fn, nil
}
// TODO: Replace this function with pkg/downloader - no reason to have a (crappier) bespoke download file fn here, but get things working before that change.
func downloadFile(url string) (string, error) {
// Get the data
resp, err := http.Get(url)
if err != nil {
return "", err
}
defer resp.Body.Close()
// Create the file
out, err := os.CreateTemp("", "image")
if err != nil {
return "", err
}
defer out.Close()
// Write the body to file
_, err = io.Copy(out, resp.Body)
return out.Name(), err
}

View file

@ -11,17 +11,22 @@ import (
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/rs/zerolog/log"
"github.com/go-skynet/LocalAI/pkg/concurrency"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/go-skynet/LocalAI/pkg/grpc"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
)
type LLMResponse struct {
Response string // should this be []byte?
Usage TokenUsage
type LLMRequest struct {
Id int // TODO Remove if not used.
Text string
Images []string
RawMessages []schema.Message
// TODO: Other Modalities?
}
type TokenUsage struct {
@ -29,57 +34,94 @@ type TokenUsage struct {
Completion int
}
func ModelInference(ctx context.Context, s string, messages []schema.Message, images []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
modelFile := c.Model
threads := c.Threads
if *threads == 0 && o.Threads != 0 {
threads = &o.Threads
type LLMResponse struct {
Request *LLMRequest
Response string // should this be []byte?
Usage TokenUsage
}
// TODO: Does this belong here or in core/services/openai.go?
type LLMResponseBundle struct {
Request *schema.OpenAIRequest
Response []schema.Choice
Usage TokenUsage
}
type LLMBackendService struct {
bcl *config.BackendConfigLoader
ml *model.ModelLoader
appConfig *config.ApplicationConfig
ftMutex sync.Mutex
cutstrings map[string]*regexp.Regexp
}
func NewLLMBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *LLMBackendService {
return &LLMBackendService{
bcl: bcl,
ml: ml,
appConfig: appConfig,
ftMutex: sync.Mutex{},
cutstrings: make(map[string]*regexp.Regexp),
}
grpcOpts := gRPCModelOpts(c)
}
// TODO: Should ctx param be removed and replaced with hardcoded req.Context?
func (llmbs *LLMBackendService) Inference(ctx context.Context, req *LLMRequest, bc *config.BackendConfig, enableTokenChannel bool) (
resultChannel <-chan concurrency.ErrorOr[*LLMResponse], tokenChannel <-chan concurrency.ErrorOr[*LLMResponse], err error) {
threads := bc.Threads
if (threads == nil || *threads == 0) && llmbs.appConfig.Threads != 0 {
threads = &llmbs.appConfig.Threads
}
grpcOpts := gRPCModelOpts(bc)
var inferenceModel grpc.Backend
var err error
opts := modelOpts(c, o, []model.Option{
opts := modelOpts(bc, llmbs.appConfig, []model.Option{
model.WithLoadGRPCLoadModelOpts(grpcOpts),
model.WithThreads(uint32(*threads)), // some models uses this to allocate threads during startup
model.WithAssetDir(o.AssetsDestination),
model.WithModel(modelFile),
model.WithContext(o.Context),
model.WithAssetDir(llmbs.appConfig.AssetsDestination),
model.WithModel(bc.Model),
model.WithContext(llmbs.appConfig.Context),
})
if c.Backend != "" {
opts = append(opts, model.WithBackendString(c.Backend))
if bc.Backend != "" {
opts = append(opts, model.WithBackendString(bc.Backend))
}
// Check if the modelFile exists, if it doesn't try to load it from the gallery
if o.AutoloadGalleries { // experimental
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
// Check if bc.Model exists, if it doesn't try to load it from the gallery
if llmbs.appConfig.AutoloadGalleries { // experimental
if _, err := os.Stat(bc.Model); os.IsNotExist(err) {
utils.ResetDownloadTimers()
// if we failed to load the model, we try to download it
err := gallery.InstallModelFromGalleryByName(o.Galleries, modelFile, loader.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction)
err := gallery.InstallModelFromGalleryByName(llmbs.appConfig.Galleries, bc.Model, llmbs.appConfig.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction)
if err != nil {
return nil, err
return nil, nil, err
}
}
}
if c.Backend == "" {
inferenceModel, err = loader.GreedyLoader(opts...)
if bc.Backend == "" {
log.Debug().Msgf("backend not known for %q, falling back to greedy loader to find it", bc.Model)
inferenceModel, err = llmbs.ml.GreedyLoader(opts...)
} else {
inferenceModel, err = loader.BackendLoader(opts...)
inferenceModel, err = llmbs.ml.BackendLoader(opts...)
}
if err != nil {
return nil, err
log.Error().Err(err).Msg("[llmbs.Inference] failed to load a backend")
return
}
var protoMessages []*proto.Message
// if we are using the tokenizer template, we need to convert the messages to proto messages
// unless the prompt has already been tokenized (non-chat endpoints + functions)
if c.TemplateConfig.UseTokenizerTemplate && s == "" {
protoMessages = make([]*proto.Message, len(messages), len(messages))
for i, message := range messages {
grpcPredOpts := gRPCPredictOpts(bc, llmbs.appConfig.ModelPath)
grpcPredOpts.Prompt = req.Text
grpcPredOpts.Images = req.Images
if bc.TemplateConfig.UseTokenizerTemplate && req.Text == "" {
grpcPredOpts.UseTokenizerTemplate = true
protoMessages := make([]*proto.Message, len(req.RawMessages), len(req.RawMessages))
for i, message := range req.RawMessages {
protoMessages[i] = &proto.Message{
Role: message.Role,
}
@ -87,47 +129,32 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
case string:
protoMessages[i].Content = ct
default:
return nil, fmt.Errorf("Unsupported type for schema.Message.Content for inference: %T", ct)
err = fmt.Errorf("unsupported type for schema.Message.Content for inference: %T", ct)
return
}
}
}
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
fn := func() (LLMResponse, error) {
opts := gRPCPredictOpts(c, loader.ModelPath)
opts.Prompt = s
opts.Messages = protoMessages
opts.UseTokenizerTemplate = c.TemplateConfig.UseTokenizerTemplate
opts.Images = images
tokenUsage := TokenUsage{}
tokenUsage := TokenUsage{}
promptInfo, pErr := inferenceModel.TokenizeString(ctx, grpcPredOpts)
if pErr == nil && promptInfo.Length > 0 {
tokenUsage.Prompt = int(promptInfo.Length)
}
// check the per-model feature flag for usage, since tokenCallback may have a cost.
// Defaults to off as for now it is still experimental
if c.FeatureFlag.Enabled("usage") {
userTokenCallback := tokenCallback
if userTokenCallback == nil {
userTokenCallback = func(token string, usage TokenUsage) bool {
return true
}
}
rawResultChannel := make(chan concurrency.ErrorOr[*LLMResponse])
// TODO this next line is the biggest argument for taking named return values _back_ out!!!
var rawTokenChannel chan concurrency.ErrorOr[*LLMResponse]
promptInfo, pErr := inferenceModel.TokenizeString(ctx, opts)
if pErr == nil && promptInfo.Length > 0 {
tokenUsage.Prompt = int(promptInfo.Length)
}
if enableTokenChannel {
rawTokenChannel = make(chan concurrency.ErrorOr[*LLMResponse])
tokenCallback = func(token string, usage TokenUsage) bool {
tokenUsage.Completion++
return userTokenCallback(token, tokenUsage)
}
}
if tokenCallback != nil {
ss := ""
// TODO Needs better name
ss := ""
go func() {
var partialRune []byte
err := inferenceModel.PredictStream(ctx, opts, func(chars []byte) {
err := inferenceModel.PredictStream(ctx, grpcPredOpts, func(chars []byte) {
partialRune = append(partialRune, chars...)
for len(partialRune) > 0 {
@ -137,48 +164,120 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
break
}
tokenCallback(string(r), tokenUsage)
tokenUsage.Completion++
rawTokenChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
Response: string(r),
Usage: tokenUsage,
}}
ss += string(r)
partialRune = partialRune[size:]
}
})
return LLMResponse{
Response: ss,
Usage: tokenUsage,
}, err
} else {
// TODO: Is the chicken bit the only way to get here? is that acceptable?
reply, err := inferenceModel.Predict(ctx, opts)
close(rawTokenChannel)
if err != nil {
return LLMResponse{}, err
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Error: err}
} else {
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
Response: ss,
Usage: tokenUsage,
}}
}
return LLMResponse{
Response: string(reply.Message),
Usage: tokenUsage,
}, err
}
close(rawResultChannel)
}()
} else {
go func() {
reply, err := inferenceModel.Predict(ctx, grpcPredOpts)
if err != nil {
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Error: err}
close(rawResultChannel)
} else {
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
Response: string(reply.Message),
Usage: tokenUsage,
}}
close(rawResultChannel)
}
}()
}
return fn, nil
resultChannel = rawResultChannel
tokenChannel = rawTokenChannel
return
}
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
var mu sync.Mutex = sync.Mutex{}
// TODO: Should predInput be a seperate param still, or should this fn handle extracting it from request??
func (llmbs *LLMBackendService) GenerateText(predInput string, request *schema.OpenAIRequest, bc *config.BackendConfig,
mappingFn func(*LLMResponse) schema.Choice, enableCompletionChannels bool, enableTokenChannels bool) (
// Returns:
resultChannel <-chan concurrency.ErrorOr[*LLMResponseBundle], completionChannels []<-chan concurrency.ErrorOr[*LLMResponse], tokenChannels []<-chan concurrency.ErrorOr[*LLMResponse], err error) {
func Finetune(config config.BackendConfig, input, prediction string) string {
rawChannel := make(chan concurrency.ErrorOr[*LLMResponseBundle])
resultChannel = rawChannel
if request.N == 0 { // number of completions to return
request.N = 1
}
images := []string{}
for _, m := range request.Messages {
images = append(images, m.StringImages...)
}
for i := 0; i < request.N; i++ {
individualResultChannel, tokenChannel, infErr := llmbs.Inference(request.Context, &LLMRequest{
Text: predInput,
Images: images,
RawMessages: request.Messages,
}, bc, enableTokenChannels)
if infErr != nil {
err = infErr // Avoids complaints about redeclaring err but looks dumb
return
}
completionChannels = append(completionChannels, individualResultChannel)
tokenChannels = append(tokenChannels, tokenChannel)
}
go func() {
initialBundle := LLMResponseBundle{
Request: request,
Response: []schema.Choice{},
Usage: TokenUsage{},
}
wg := concurrency.SliceOfChannelsReducer(completionChannels, rawChannel, func(iv concurrency.ErrorOr[*LLMResponse], ov concurrency.ErrorOr[*LLMResponseBundle]) concurrency.ErrorOr[*LLMResponseBundle] {
if iv.Error != nil {
ov.Error = iv.Error
// TODO: Decide if we should wipe partials or not?
return ov
}
ov.Value.Usage.Prompt += iv.Value.Usage.Prompt
ov.Value.Usage.Completion += iv.Value.Usage.Completion
ov.Value.Response = append(ov.Value.Response, mappingFn(iv.Value))
return ov
}, concurrency.ErrorOr[*LLMResponseBundle]{Value: &initialBundle}, true)
wg.Wait()
}()
return
}
func (llmbs *LLMBackendService) Finetune(config config.BackendConfig, input, prediction string) string {
if config.Echo {
prediction = input + prediction
}
for _, c := range config.Cutstrings {
mu.Lock()
reg, ok := cutstrings[c]
llmbs.ftMutex.Lock()
reg, ok := llmbs.cutstrings[c]
if !ok {
cutstrings[c] = regexp.MustCompile(c)
reg = cutstrings[c]
llmbs.cutstrings[c] = regexp.MustCompile(c)
reg = llmbs.cutstrings[c]
}
mu.Unlock()
llmbs.ftMutex.Unlock()
prediction = reg.ReplaceAllString(prediction, "")
}

View file

@ -10,7 +10,7 @@ import (
model "github.com/go-skynet/LocalAI/pkg/model"
)
func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []model.Option) []model.Option {
func modelOpts(bc *config.BackendConfig, so *config.ApplicationConfig, opts []model.Option) []model.Option {
if so.SingleBackend {
opts = append(opts, model.WithSingleActiveBackend())
}
@ -19,12 +19,12 @@ func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []mode
opts = append(opts, model.EnableParallelRequests)
}
if c.GRPC.Attempts != 0 {
opts = append(opts, model.WithGRPCAttempts(c.GRPC.Attempts))
if bc.GRPC.Attempts != 0 {
opts = append(opts, model.WithGRPCAttempts(bc.GRPC.Attempts))
}
if c.GRPC.AttemptsSleepTime != 0 {
opts = append(opts, model.WithGRPCAttemptsDelay(c.GRPC.AttemptsSleepTime))
if bc.GRPC.AttemptsSleepTime != 0 {
opts = append(opts, model.WithGRPCAttemptsDelay(bc.GRPC.AttemptsSleepTime))
}
for k, v := range so.ExternalGRPCBackends {
@ -34,7 +34,7 @@ func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []mode
return opts
}
func getSeed(c config.BackendConfig) int32 {
func getSeed(c *config.BackendConfig) int32 {
seed := int32(*c.Seed)
if seed == config.RAND_SEED {
seed = rand.Int31()
@ -43,7 +43,7 @@ func getSeed(c config.BackendConfig) int32 {
return seed
}
func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
func gRPCModelOpts(c *config.BackendConfig) *pb.ModelOptions {
b := 512
if c.Batch != 0 {
b = c.Batch
@ -104,47 +104,47 @@ func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
}
}
func gRPCPredictOpts(c config.BackendConfig, modelPath string) *pb.PredictOptions {
func gRPCPredictOpts(bc *config.BackendConfig, modelPath string) *pb.PredictOptions {
promptCachePath := ""
if c.PromptCachePath != "" {
p := filepath.Join(modelPath, c.PromptCachePath)
if bc.PromptCachePath != "" {
p := filepath.Join(modelPath, bc.PromptCachePath)
os.MkdirAll(filepath.Dir(p), 0755)
promptCachePath = p
}
return &pb.PredictOptions{
Temperature: float32(*c.Temperature),
TopP: float32(*c.TopP),
NDraft: c.NDraft,
TopK: int32(*c.TopK),
Tokens: int32(*c.Maxtokens),
Threads: int32(*c.Threads),
PromptCacheAll: c.PromptCacheAll,
PromptCacheRO: c.PromptCacheRO,
Temperature: float32(*bc.Temperature),
TopP: float32(*bc.TopP),
NDraft: bc.NDraft,
TopK: int32(*bc.TopK),
Tokens: int32(*bc.Maxtokens),
Threads: int32(*bc.Threads),
PromptCacheAll: bc.PromptCacheAll,
PromptCacheRO: bc.PromptCacheRO,
PromptCachePath: promptCachePath,
F16KV: *c.F16,
DebugMode: *c.Debug,
Grammar: c.Grammar,
NegativePromptScale: c.NegativePromptScale,
RopeFreqBase: c.RopeFreqBase,
RopeFreqScale: c.RopeFreqScale,
NegativePrompt: c.NegativePrompt,
Mirostat: int32(*c.LLMConfig.Mirostat),
MirostatETA: float32(*c.LLMConfig.MirostatETA),
MirostatTAU: float32(*c.LLMConfig.MirostatTAU),
Debug: *c.Debug,
StopPrompts: c.StopWords,
Repeat: int32(c.RepeatPenalty),
NKeep: int32(c.Keep),
Batch: int32(c.Batch),
IgnoreEOS: c.IgnoreEOS,
Seed: getSeed(c),
FrequencyPenalty: float32(c.FrequencyPenalty),
MLock: *c.MMlock,
MMap: *c.MMap,
MainGPU: c.MainGPU,
TensorSplit: c.TensorSplit,
TailFreeSamplingZ: float32(*c.TFZ),
TypicalP: float32(*c.TypicalP),
F16KV: *bc.F16,
DebugMode: *bc.Debug,
Grammar: bc.Grammar,
NegativePromptScale: bc.NegativePromptScale,
RopeFreqBase: bc.RopeFreqBase,
RopeFreqScale: bc.RopeFreqScale,
NegativePrompt: bc.NegativePrompt,
Mirostat: int32(*bc.LLMConfig.Mirostat),
MirostatETA: float32(*bc.LLMConfig.MirostatETA),
MirostatTAU: float32(*bc.LLMConfig.MirostatTAU),
Debug: *bc.Debug,
StopPrompts: bc.StopWords,
Repeat: int32(bc.RepeatPenalty),
NKeep: int32(bc.Keep),
Batch: int32(bc.Batch),
IgnoreEOS: bc.IgnoreEOS,
Seed: getSeed(bc),
FrequencyPenalty: float32(bc.FrequencyPenalty),
MLock: *bc.MMlock,
MMap: *bc.MMap,
MainGPU: bc.MainGPU,
TensorSplit: bc.TensorSplit,
TailFreeSamplingZ: float32(*bc.TFZ),
TypicalP: float32(*bc.TypicalP),
}
}

View file

@ -7,11 +7,48 @@ import (
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/concurrency"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/model"
)
func ModelTranscription(audio, language string, ml *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (*schema.Result, error) {
type TranscriptionBackendService struct {
ml *model.ModelLoader
bcl *config.BackendConfigLoader
appConfig *config.ApplicationConfig
}
func NewTranscriptionBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *TranscriptionBackendService {
return &TranscriptionBackendService{
ml: ml,
bcl: bcl,
appConfig: appConfig,
}
}
func (tbs *TranscriptionBackendService) Transcribe(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.TranscriptionResult] {
responseChannel := make(chan concurrency.ErrorOr[*schema.TranscriptionResult])
go func(request *schema.OpenAIRequest) {
bc, request, err := tbs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, tbs.appConfig)
if err != nil {
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Error: fmt.Errorf("failed reading parameters from request:%w", err)}
close(responseChannel)
return
}
tr, err := modelTranscription(request.File, request.Language, tbs.ml, bc, tbs.appConfig)
if err != nil {
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Error: err}
close(responseChannel)
return
}
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Value: tr}
close(responseChannel)
}(request)
return responseChannel
}
func modelTranscription(audio, language string, ml *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (*schema.TranscriptionResult, error) {
opts := modelOpts(backendConfig, appConfig, []model.Option{
model.WithBackendString(model.WhisperBackend),

View file

@ -7,29 +7,60 @@ import (
"path/filepath"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/concurrency"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
)
func generateUniqueFileName(dir, baseName, ext string) string {
counter := 1
fileName := baseName + ext
type TextToSpeechBackendService struct {
ml *model.ModelLoader
bcl *config.BackendConfigLoader
appConfig *config.ApplicationConfig
}
for {
filePath := filepath.Join(dir, fileName)
_, err := os.Stat(filePath)
if os.IsNotExist(err) {
return fileName
}
counter++
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
func NewTextToSpeechBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *TextToSpeechBackendService {
return &TextToSpeechBackendService{
ml: ml,
bcl: bcl,
appConfig: appConfig,
}
}
func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig config.BackendConfig) (string, *proto.Result, error) {
func (ttsbs *TextToSpeechBackendService) TextToAudioFile(request *schema.TTSRequest) <-chan concurrency.ErrorOr[*string] {
responseChannel := make(chan concurrency.ErrorOr[*string])
go func(request *schema.TTSRequest) {
cfg, err := ttsbs.bcl.LoadBackendConfigFileByName(request.Model, ttsbs.appConfig.ModelPath,
config.LoadOptionDebug(ttsbs.appConfig.Debug),
config.LoadOptionThreads(ttsbs.appConfig.Threads),
config.LoadOptionContextSize(ttsbs.appConfig.ContextSize),
config.LoadOptionF16(ttsbs.appConfig.F16),
)
if err != nil {
responseChannel <- concurrency.ErrorOr[*string]{Error: err}
close(responseChannel)
return
}
if request.Backend != "" {
cfg.Backend = request.Backend
}
outFile, _, err := modelTTS(cfg.Backend, request.Input, cfg.Model, request.Voice, ttsbs.ml, ttsbs.appConfig, cfg)
if err != nil {
responseChannel <- concurrency.ErrorOr[*string]{Error: err}
close(responseChannel)
return
}
responseChannel <- concurrency.ErrorOr[*string]{Value: &outFile}
close(responseChannel)
}(request)
return responseChannel
}
func modelTTS(backend, text, modelFile string, voice string, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig *config.BackendConfig) (string, *proto.Result, error) {
bb := backend
if bb == "" {
bb = model.PiperBackend
@ -37,7 +68,7 @@ func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader,
grpcOpts := gRPCModelOpts(backendConfig)
opts := modelOpts(config.BackendConfig{}, appConfig, []model.Option{
opts := modelOpts(&config.BackendConfig{}, appConfig, []model.Option{
model.WithBackendString(bb),
model.WithModel(modelFile),
model.WithContext(appConfig.Context),
@ -87,3 +118,19 @@ func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader,
return filePath, res, err
}
func generateUniqueFileName(dir, baseName, ext string) string {
counter := 1
fileName := baseName + ext
for {
filePath := filepath.Join(dir, fileName)
_, err := os.Stat(filePath)
if os.IsNotExist(err) {
return fileName
}
counter++
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
}
}