mirror of
https://github.com/mudler/LocalAI.git
synced 2025-05-31 07:54:59 +00:00
Add sam support
Signed-off-by: GitHub <noreply@github.com>
This commit is contained in:
parent
8123f009d0
commit
edcae7a5f1
8 changed files with 728 additions and 7 deletions
214
extra/grpc/sam/sam.py
Normal file
214
extra/grpc/sam/sam.py
Normal file
|
@ -0,0 +1,214 @@
|
|||
#! /usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
|
||||
from concurrent import futures
|
||||
import argparse
|
||||
import os
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
import time
|
||||
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
import torch
|
||||
from functools import partial
|
||||
from segment_anything_hq import SamAutomaticMaskGenerator
|
||||
from segment_anything_hq.modeling import ImageEncoderViT, MaskDecoderHQ, PromptEncoder, Sam, TwoWayTransformer
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
PROMT_EMBED_DIM=256
|
||||
IMAGE_SIZE = 1024
|
||||
VIT_PATCH_SIZE=16
|
||||
|
||||
# Enum for sam model type
|
||||
class SamModelType:
|
||||
default = "sam_hq_vit_h.pth"
|
||||
vit_h = "sam_hq_vit_h.pth"
|
||||
vit_l = "sam_hq_vit_l.pth"
|
||||
vit_b = "sam_hq_vit_b.pth"
|
||||
vit_tiny = "sam_hq_vit_tiny.pth"
|
||||
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
A gRPC servicer for the backend service.
|
||||
"""
|
||||
|
||||
def Health(self, request, context):
|
||||
return backend_pb2.Reply(message=bytes("OK", "utf-8"))
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
try:
|
||||
model_name = request.model_name
|
||||
if model_name not in SamModelType.__dict__.keys():
|
||||
raise Exception(f"Model name {model_name} not found in {SamModelType.__dict__.keys()}")
|
||||
model_path = request.model_path
|
||||
# check the model_path is valid
|
||||
if not os.path.exists(model_path):
|
||||
raise Exception(f"Model path {model_path} does not exist")
|
||||
|
||||
match model_name:
|
||||
case SamModelType.default:
|
||||
sam = _build_sam_vit_h(checkpoint=model_path)
|
||||
case SamModelType.vit_h:
|
||||
sam = _build_sam_vit_h(checkpoint=model_path)
|
||||
case SamModelType.vit_l:
|
||||
sam = _build_sam_vit_l(checkpoint=model_path)
|
||||
case SamModelType.vit_b:
|
||||
sam = _build_sam_vit_b(checkpoint=model_path)
|
||||
case SamModelType.vit_tiny:
|
||||
# TODO: Implement this
|
||||
pass
|
||||
case _:
|
||||
raise Exception(f"Model name {model_name} not found in {SamModelType.__dict__.keys()}")
|
||||
# TODO No sure if this is the right way to do it
|
||||
self.model=sam
|
||||
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True, message="Model loaded successfully")
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
try:
|
||||
mask_generator=SamAutomaticMaskGenerator(
|
||||
model=self.model,
|
||||
points_per_side=32,
|
||||
pred_iou_thresh=0.8,
|
||||
stability_score_thresh=0.9,
|
||||
crop_n_layers=1,
|
||||
crop_n_points_downscale_factor=2,
|
||||
min_mask_region_area=100
|
||||
)
|
||||
|
||||
masks=mask_generator.generate_mask(request.image)
|
||||
masks_to_image(masks, request)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True, message="Image generated successfully")
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
return super().PredictStream(request, context)
|
||||
|
||||
def _constrcut_sam(encoder_embed_dim,encoder_depth,encoder_num_heads,encoder_global_attn_indexes,checkpoint=None):
|
||||
image_embedding_size = IMAGE_SIZE // VIT_PATCH_SIZE
|
||||
sam = Sam(
|
||||
image_encoder=ImageEncoderViT(
|
||||
depth=encoder_depth,
|
||||
embed_dim=encoder_embed_dim,
|
||||
img_size=IMAGE_SIZE,
|
||||
mlp_ratio=4,
|
||||
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
||||
num_heads=encoder_num_heads,
|
||||
patch_size=VIT_PATCH_SIZE,
|
||||
qkv_bias=True,
|
||||
use_rel_pos=True,
|
||||
global_attn_indexes=encoder_global_attn_indexes,
|
||||
window_size=14,
|
||||
out_chans=PROMT_EMBED_DIM,
|
||||
),
|
||||
prompt_encoder=PromptEncoder(
|
||||
embed_dim=PROMT_EMBED_DIM,
|
||||
image_embedding_size=(image_embedding_size, image_embedding_size),
|
||||
input_image_size=(IMAGE_SIZE, IMAGE_SIZE),
|
||||
mask_in_chans=16,
|
||||
),
|
||||
mask_decoder=MaskDecoderHQ(
|
||||
num_multimask_outputs=3,
|
||||
transformer=TwoWayTransformer(
|
||||
depth=2,
|
||||
embedding_dim=PROMT_EMBED_DIM,
|
||||
mlp_dim=2048,
|
||||
num_heads=8,
|
||||
),
|
||||
transformer_dim=PROMT_EMBED_DIM,
|
||||
iou_head_depth=3,
|
||||
iou_head_hidden_dim=256,
|
||||
vit_dim=encoder_embed_dim,
|
||||
),
|
||||
pixel_mean=[123.675, 116.28, 103.53],
|
||||
pixel_std=[58.395, 57.12, 57.375],
|
||||
)
|
||||
|
||||
sam.eval()
|
||||
if checkpoint is not None:
|
||||
with open(checkpoint, "rb") as f:
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
state_dict = torch.load(f, map_location=device)
|
||||
info = sam.load_state_dict(state_dict, strict=False)
|
||||
print(info)
|
||||
for n, p in sam.named_parameters():
|
||||
if 'hf_token' not in n and 'hf_mlp' not in n and 'compress_vit_feat' not in n and 'embedding_encoder' not in n and 'embedding_maskfeature' not in n:
|
||||
p.requires_grad = False
|
||||
|
||||
return sam
|
||||
|
||||
def _build_sam_vit_h(checkpoint=None):
|
||||
return _constrcut_sam(encoder_embed_dim=1280,encoder_depth=32,encoder_num_heads=16,encoder_global_attn_indexes=[7,15,23,31],checkpoint=checkpoint)
|
||||
|
||||
def _build_sam_vit_l(checkpoint=None):
|
||||
return _constrcut_sam(encoder_embed_dim=1024,encoder_depth=24,encoder_num_heads=16,encoder_global_attn_indexes=[5,11,17,23],checkpoint=checkpoint)
|
||||
|
||||
def _build_sam_vit_b(checkpoint=None):
|
||||
return _constrcut_sam(encoder_embed_dim=768,encoder_depth=12,encoder_num_heads=12,encoder_global_attn_indexes=[2,5,8,11],checkpoint=checkpoint)
|
||||
|
||||
def masks_to_image(anns, request):
|
||||
if len(anns)==0:
|
||||
return
|
||||
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
|
||||
ax = plt.gca()
|
||||
ax.set_autoscale_on(False)
|
||||
|
||||
img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
|
||||
img[:,:,3] = 0
|
||||
for ann in sorted_anns:
|
||||
m = ann['segmentation']
|
||||
color_mask = np.concatenate([np.random.random(3), [0.35]])
|
||||
img[m] = color_mask
|
||||
ax.imshow(img)
|
||||
plt.axis('off')
|
||||
plt.imsave(request.dst, img)
|
||||
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
Loading…
Add table
Add a link
Reference in a new issue