mirror of
https://github.com/mudler/LocalAI.git
synced 2025-06-29 22:20:43 +00:00
feat(kokoro): Add new TTS backend
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
parent
de4aa9fb1d
commit
d6b0514dbf
14 changed files with 733 additions and 0 deletions
20
backend/python/kokoro/Makefile
Normal file
20
backend/python/kokoro/Makefile
Normal file
|
@ -0,0 +1,20 @@
|
||||||
|
.DEFAULT_GOAL := install
|
||||||
|
|
||||||
|
.PHONY: install
|
||||||
|
install:
|
||||||
|
bash install.sh
|
||||||
|
$(MAKE) protogen
|
||||||
|
|
||||||
|
.PHONY: protogen
|
||||||
|
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||||
|
|
||||||
|
.PHONY: protogen-clean
|
||||||
|
protogen-clean:
|
||||||
|
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||||
|
|
||||||
|
backend_pb2_grpc.py backend_pb2.py:
|
||||||
|
bash protogen.sh
|
||||||
|
|
||||||
|
.PHONY: clean
|
||||||
|
clean: protogen-clean
|
||||||
|
rm -rf venv __pycache__
|
122
backend/python/kokoro/backend.py
Executable file
122
backend/python/kokoro/backend.py
Executable file
|
@ -0,0 +1,122 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Extra gRPC server for Kokoro models.
|
||||||
|
"""
|
||||||
|
from concurrent import futures
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import signal
|
||||||
|
import sys
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
import backend_pb2
|
||||||
|
import backend_pb2_grpc
|
||||||
|
import soundfile as sf
|
||||||
|
import grpc
|
||||||
|
|
||||||
|
from models import build_model
|
||||||
|
from kokoro import generate
|
||||||
|
import torch
|
||||||
|
|
||||||
|
SAMPLE_RATE = 22050
|
||||||
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||||
|
|
||||||
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||||
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||||
|
|
||||||
|
# Implement the BackendServicer class with the service methods
|
||||||
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||||
|
"""
|
||||||
|
A gRPC servicer for the backend service.
|
||||||
|
|
||||||
|
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
|
||||||
|
"""
|
||||||
|
def Health(self, request, context):
|
||||||
|
"""
|
||||||
|
A gRPC method that returns the health status of the backend service.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
request: A HealthRequest object that contains the request parameters.
|
||||||
|
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A Reply object that contains the health status of the backend service.
|
||||||
|
"""
|
||||||
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||||
|
|
||||||
|
def LoadModel(self, request, context):
|
||||||
|
"""
|
||||||
|
A gRPC method that loads a model into memory.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
request: A LoadModelRequest object that contains the request parameters.
|
||||||
|
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A Result object that contains the result of the LoadModel operation.
|
||||||
|
"""
|
||||||
|
model_name = request.Model
|
||||||
|
try:
|
||||||
|
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||||
|
self.MODEL = build_model(request.ModelFile, device)
|
||||||
|
options = request.Options
|
||||||
|
# Find the voice from the options, options are a list of strings in this form optname:optvalue:
|
||||||
|
VOICE_NAME = None
|
||||||
|
for opt in options:
|
||||||
|
if opt.startswith("voice:"):
|
||||||
|
VOICE_NAME = opt.split(":")[1]
|
||||||
|
break
|
||||||
|
if VOICE_NAME is None:
|
||||||
|
return backend_pb2.Result(success=False, message=f"No voice specified in options")
|
||||||
|
MODELPATH = request.ModelPath
|
||||||
|
self.VOICE_NAME = VOICE_NAME
|
||||||
|
self.VOICEPACK = torch.load(f'{MODELPATH}/{VOICE_NAME}.pt', weights_only=True).to(device)
|
||||||
|
print(f'Loaded voice: {VOICE_NAME}')
|
||||||
|
except Exception as err:
|
||||||
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||||
|
|
||||||
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||||
|
|
||||||
|
def TTS(self, request, context):
|
||||||
|
model_name = request.model
|
||||||
|
if model_name == "":
|
||||||
|
return backend_pb2.Result(success=False, message="request.model is required")
|
||||||
|
try:
|
||||||
|
audio, out_ps = generate(self.MODEL, request.text, self.VOICEPACK, lang=self.VOICE_NAME)
|
||||||
|
print(out_ps)
|
||||||
|
sf.write(request.dst, audio, SAMPLE_RATE)
|
||||||
|
except Exception as err:
|
||||||
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||||
|
return backend_pb2.Result(success=True)
|
||||||
|
|
||||||
|
def serve(address):
|
||||||
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||||
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||||
|
server.add_insecure_port(address)
|
||||||
|
server.start()
|
||||||
|
print("[Kokoro] Server started. Listening on: " + address, file=sys.stderr)
|
||||||
|
|
||||||
|
# Define the signal handler function
|
||||||
|
def signal_handler(sig, frame):
|
||||||
|
print("[Kokoro] Received termination signal. Shutting down...")
|
||||||
|
server.stop(0)
|
||||||
|
sys.exit(0)
|
||||||
|
|
||||||
|
# Set the signal handlers for SIGINT and SIGTERM
|
||||||
|
signal.signal(signal.SIGINT, signal_handler)
|
||||||
|
signal.signal(signal.SIGTERM, signal_handler)
|
||||||
|
|
||||||
|
try:
|
||||||
|
while True:
|
||||||
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
server.stop(0)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
print(f"[Kokoro] startup: {args}", file=sys.stderr)
|
||||||
|
serve(args.addr)
|
14
backend/python/kokoro/install.sh
Executable file
14
backend/python/kokoro/install.sh
Executable file
|
@ -0,0 +1,14 @@
|
||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
|
||||||
|
source $(dirname $0)/../common/libbackend.sh
|
||||||
|
|
||||||
|
# This is here because the Intel pip index is broken and returns 200 status codes for every package name, it just doesn't return any package links.
|
||||||
|
# This makes uv think that the package exists in the Intel pip index, and by default it stops looking at other pip indexes once it finds a match.
|
||||||
|
# We need uv to continue falling through to the pypi default index to find optimum[openvino] in the pypi index
|
||||||
|
# the --upgrade actually allows us to *downgrade* torch to the version provided in the Intel pip index
|
||||||
|
if [ "x${BUILD_PROFILE}" == "xintel" ]; then
|
||||||
|
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
|
||||||
|
fi
|
||||||
|
|
||||||
|
installRequirements
|
166
backend/python/kokoro/kokoro.py
Normal file
166
backend/python/kokoro/kokoro.py
Normal file
|
@ -0,0 +1,166 @@
|
||||||
|
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/kokoro.py
|
||||||
|
import phonemizer
|
||||||
|
import re
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
def split_num(num):
|
||||||
|
num = num.group()
|
||||||
|
if '.' in num:
|
||||||
|
return num
|
||||||
|
elif ':' in num:
|
||||||
|
h, m = [int(n) for n in num.split(':')]
|
||||||
|
if m == 0:
|
||||||
|
return f"{h} o'clock"
|
||||||
|
elif m < 10:
|
||||||
|
return f'{h} oh {m}'
|
||||||
|
return f'{h} {m}'
|
||||||
|
year = int(num[:4])
|
||||||
|
if year < 1100 or year % 1000 < 10:
|
||||||
|
return num
|
||||||
|
left, right = num[:2], int(num[2:4])
|
||||||
|
s = 's' if num.endswith('s') else ''
|
||||||
|
if 100 <= year % 1000 <= 999:
|
||||||
|
if right == 0:
|
||||||
|
return f'{left} hundred{s}'
|
||||||
|
elif right < 10:
|
||||||
|
return f'{left} oh {right}{s}'
|
||||||
|
return f'{left} {right}{s}'
|
||||||
|
|
||||||
|
def flip_money(m):
|
||||||
|
m = m.group()
|
||||||
|
bill = 'dollar' if m[0] == '$' else 'pound'
|
||||||
|
if m[-1].isalpha():
|
||||||
|
return f'{m[1:]} {bill}s'
|
||||||
|
elif '.' not in m:
|
||||||
|
s = '' if m[1:] == '1' else 's'
|
||||||
|
return f'{m[1:]} {bill}{s}'
|
||||||
|
b, c = m[1:].split('.')
|
||||||
|
s = '' if b == '1' else 's'
|
||||||
|
c = int(c.ljust(2, '0'))
|
||||||
|
coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
|
||||||
|
return f'{b} {bill}{s} and {c} {coins}'
|
||||||
|
|
||||||
|
def point_num(num):
|
||||||
|
a, b = num.group().split('.')
|
||||||
|
return ' point '.join([a, ' '.join(b)])
|
||||||
|
|
||||||
|
def normalize_text(text):
|
||||||
|
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
|
||||||
|
text = text.replace('«', chr(8220)).replace('»', chr(8221))
|
||||||
|
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
|
||||||
|
text = text.replace('(', '«').replace(')', '»')
|
||||||
|
for a, b in zip('、。!,:;?', ',.!,:;?'):
|
||||||
|
text = text.replace(a, b+' ')
|
||||||
|
text = re.sub(r'[^\S \n]', ' ', text)
|
||||||
|
text = re.sub(r' +', ' ', text)
|
||||||
|
text = re.sub(r'(?<=\n) +(?=\n)', '', text)
|
||||||
|
text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
|
||||||
|
text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
|
||||||
|
text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
|
||||||
|
text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
|
||||||
|
text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
|
||||||
|
text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
|
||||||
|
text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
|
||||||
|
text = re.sub(r'(?<=\d),(?=\d)', '', text)
|
||||||
|
text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
|
||||||
|
text = re.sub(r'\d*\.\d+', point_num, text)
|
||||||
|
text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text)
|
||||||
|
text = re.sub(r'(?<=\d)S', ' S', text)
|
||||||
|
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
|
||||||
|
text = re.sub(r"(?<=X')S\b", 's', text)
|
||||||
|
text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
|
||||||
|
text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
|
||||||
|
return text.strip()
|
||||||
|
|
||||||
|
def get_vocab():
|
||||||
|
_pad = "$"
|
||||||
|
_punctuation = ';:,.!?¡¿—…"«»“” '
|
||||||
|
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
||||||
|
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
||||||
|
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
||||||
|
dicts = {}
|
||||||
|
for i in range(len((symbols))):
|
||||||
|
dicts[symbols[i]] = i
|
||||||
|
return dicts
|
||||||
|
|
||||||
|
VOCAB = get_vocab()
|
||||||
|
def tokenize(ps):
|
||||||
|
return [i for i in map(VOCAB.get, ps) if i is not None]
|
||||||
|
|
||||||
|
phonemizers = dict(
|
||||||
|
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
|
||||||
|
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
|
||||||
|
)
|
||||||
|
def phonemize(text, lang, norm=True):
|
||||||
|
if norm:
|
||||||
|
text = normalize_text(text)
|
||||||
|
ps = phonemizers[lang].phonemize([text])
|
||||||
|
ps = ps[0] if ps else ''
|
||||||
|
# https://en.wiktionary.org/wiki/kokoro#English
|
||||||
|
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
|
||||||
|
ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
|
||||||
|
ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
|
||||||
|
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
|
||||||
|
if lang == 'a':
|
||||||
|
ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
|
||||||
|
ps = ''.join(filter(lambda p: p in VOCAB, ps))
|
||||||
|
return ps.strip()
|
||||||
|
|
||||||
|
def length_to_mask(lengths):
|
||||||
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||||
|
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||||
|
return mask
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def forward(model, tokens, ref_s, speed):
|
||||||
|
device = ref_s.device
|
||||||
|
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
|
||||||
|
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
||||||
|
text_mask = length_to_mask(input_lengths).to(device)
|
||||||
|
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
||||||
|
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
||||||
|
s = ref_s[:, 128:]
|
||||||
|
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
|
||||||
|
x, _ = model.predictor.lstm(d)
|
||||||
|
duration = model.predictor.duration_proj(x)
|
||||||
|
duration = torch.sigmoid(duration).sum(axis=-1) / speed
|
||||||
|
pred_dur = torch.round(duration).clamp(min=1).long()
|
||||||
|
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
|
||||||
|
c_frame = 0
|
||||||
|
for i in range(pred_aln_trg.size(0)):
|
||||||
|
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
|
||||||
|
c_frame += pred_dur[0,i].item()
|
||||||
|
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
|
||||||
|
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
|
||||||
|
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
||||||
|
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
|
||||||
|
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
|
||||||
|
|
||||||
|
def generate(model, text, voicepack, lang='a', speed=1, ps=None):
|
||||||
|
ps = ps or phonemize(text, lang)
|
||||||
|
tokens = tokenize(ps)
|
||||||
|
if not tokens:
|
||||||
|
return None
|
||||||
|
elif len(tokens) > 510:
|
||||||
|
tokens = tokens[:510]
|
||||||
|
print('Truncated to 510 tokens')
|
||||||
|
ref_s = voicepack[len(tokens)]
|
||||||
|
out = forward(model, tokens, ref_s, speed)
|
||||||
|
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
|
||||||
|
return out, ps
|
||||||
|
|
||||||
|
def generate_full(model, text, voicepack, lang='a', speed=1, ps=None):
|
||||||
|
ps = ps or phonemize(text, lang)
|
||||||
|
tokens = tokenize(ps)
|
||||||
|
if not tokens:
|
||||||
|
return None
|
||||||
|
outs = []
|
||||||
|
loop_count = len(tokens)//510 + (1 if len(tokens) % 510 != 0 else 0)
|
||||||
|
for i in range(loop_count):
|
||||||
|
ref_s = voicepack[len(tokens[i*510:(i+1)*510])]
|
||||||
|
out = forward(model, tokens[i*510:(i+1)*510], ref_s, speed)
|
||||||
|
outs.append(out)
|
||||||
|
outs = np.concatenate(outs)
|
||||||
|
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
|
||||||
|
return outs, ps
|
373
backend/python/kokoro/models.py
Normal file
373
backend/python/kokoro/models.py
Normal file
|
@ -0,0 +1,373 @@
|
||||||
|
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
|
||||||
|
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/models.py
|
||||||
|
from istftnet import AdaIN1d, Decoder
|
||||||
|
from munch import Munch
|
||||||
|
from pathlib import Path
|
||||||
|
from plbert import load_plbert
|
||||||
|
from torch.nn.utils import weight_norm, spectral_norm
|
||||||
|
import json
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
import os.path as osp
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
class LinearNorm(torch.nn.Module):
|
||||||
|
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
||||||
|
super(LinearNorm, self).__init__()
|
||||||
|
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
||||||
|
|
||||||
|
torch.nn.init.xavier_uniform_(
|
||||||
|
self.linear_layer.weight,
|
||||||
|
gain=torch.nn.init.calculate_gain(w_init_gain))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.linear_layer(x)
|
||||||
|
|
||||||
|
class LayerNorm(nn.Module):
|
||||||
|
def __init__(self, channels, eps=1e-5):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.eps = eps
|
||||||
|
|
||||||
|
self.gamma = nn.Parameter(torch.ones(channels))
|
||||||
|
self.beta = nn.Parameter(torch.zeros(channels))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = x.transpose(1, -1)
|
||||||
|
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||||
|
return x.transpose(1, -1)
|
||||||
|
|
||||||
|
class TextEncoder(nn.Module):
|
||||||
|
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
|
||||||
|
super().__init__()
|
||||||
|
self.embedding = nn.Embedding(n_symbols, channels)
|
||||||
|
|
||||||
|
padding = (kernel_size - 1) // 2
|
||||||
|
self.cnn = nn.ModuleList()
|
||||||
|
for _ in range(depth):
|
||||||
|
self.cnn.append(nn.Sequential(
|
||||||
|
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
|
||||||
|
LayerNorm(channels),
|
||||||
|
actv,
|
||||||
|
nn.Dropout(0.2),
|
||||||
|
))
|
||||||
|
# self.cnn = nn.Sequential(*self.cnn)
|
||||||
|
|
||||||
|
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
|
||||||
|
|
||||||
|
def forward(self, x, input_lengths, m):
|
||||||
|
x = self.embedding(x) # [B, T, emb]
|
||||||
|
x = x.transpose(1, 2) # [B, emb, T]
|
||||||
|
m = m.to(input_lengths.device).unsqueeze(1)
|
||||||
|
x.masked_fill_(m, 0.0)
|
||||||
|
|
||||||
|
for c in self.cnn:
|
||||||
|
x = c(x)
|
||||||
|
x.masked_fill_(m, 0.0)
|
||||||
|
|
||||||
|
x = x.transpose(1, 2) # [B, T, chn]
|
||||||
|
|
||||||
|
input_lengths = input_lengths.cpu().numpy()
|
||||||
|
x = nn.utils.rnn.pack_padded_sequence(
|
||||||
|
x, input_lengths, batch_first=True, enforce_sorted=False)
|
||||||
|
|
||||||
|
self.lstm.flatten_parameters()
|
||||||
|
x, _ = self.lstm(x)
|
||||||
|
x, _ = nn.utils.rnn.pad_packed_sequence(
|
||||||
|
x, batch_first=True)
|
||||||
|
|
||||||
|
x = x.transpose(-1, -2)
|
||||||
|
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
||||||
|
|
||||||
|
x_pad[:, :, :x.shape[-1]] = x
|
||||||
|
x = x_pad.to(x.device)
|
||||||
|
|
||||||
|
x.masked_fill_(m, 0.0)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
def inference(self, x):
|
||||||
|
x = self.embedding(x)
|
||||||
|
x = x.transpose(1, 2)
|
||||||
|
x = self.cnn(x)
|
||||||
|
x = x.transpose(1, 2)
|
||||||
|
self.lstm.flatten_parameters()
|
||||||
|
x, _ = self.lstm(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def length_to_mask(self, lengths):
|
||||||
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||||
|
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||||
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
class UpSample1d(nn.Module):
|
||||||
|
def __init__(self, layer_type):
|
||||||
|
super().__init__()
|
||||||
|
self.layer_type = layer_type
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
if self.layer_type == 'none':
|
||||||
|
return x
|
||||||
|
else:
|
||||||
|
return F.interpolate(x, scale_factor=2, mode='nearest')
|
||||||
|
|
||||||
|
class AdainResBlk1d(nn.Module):
|
||||||
|
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
||||||
|
upsample='none', dropout_p=0.0):
|
||||||
|
super().__init__()
|
||||||
|
self.actv = actv
|
||||||
|
self.upsample_type = upsample
|
||||||
|
self.upsample = UpSample1d(upsample)
|
||||||
|
self.learned_sc = dim_in != dim_out
|
||||||
|
self._build_weights(dim_in, dim_out, style_dim)
|
||||||
|
self.dropout = nn.Dropout(dropout_p)
|
||||||
|
|
||||||
|
if upsample == 'none':
|
||||||
|
self.pool = nn.Identity()
|
||||||
|
else:
|
||||||
|
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
||||||
|
|
||||||
|
|
||||||
|
def _build_weights(self, dim_in, dim_out, style_dim):
|
||||||
|
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
||||||
|
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
||||||
|
self.norm1 = AdaIN1d(style_dim, dim_in)
|
||||||
|
self.norm2 = AdaIN1d(style_dim, dim_out)
|
||||||
|
if self.learned_sc:
|
||||||
|
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
||||||
|
|
||||||
|
def _shortcut(self, x):
|
||||||
|
x = self.upsample(x)
|
||||||
|
if self.learned_sc:
|
||||||
|
x = self.conv1x1(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def _residual(self, x, s):
|
||||||
|
x = self.norm1(x, s)
|
||||||
|
x = self.actv(x)
|
||||||
|
x = self.pool(x)
|
||||||
|
x = self.conv1(self.dropout(x))
|
||||||
|
x = self.norm2(x, s)
|
||||||
|
x = self.actv(x)
|
||||||
|
x = self.conv2(self.dropout(x))
|
||||||
|
return x
|
||||||
|
|
||||||
|
def forward(self, x, s):
|
||||||
|
out = self._residual(x, s)
|
||||||
|
out = (out + self._shortcut(x)) / np.sqrt(2)
|
||||||
|
return out
|
||||||
|
|
||||||
|
class AdaLayerNorm(nn.Module):
|
||||||
|
def __init__(self, style_dim, channels, eps=1e-5):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.eps = eps
|
||||||
|
|
||||||
|
self.fc = nn.Linear(style_dim, channels*2)
|
||||||
|
|
||||||
|
def forward(self, x, s):
|
||||||
|
x = x.transpose(-1, -2)
|
||||||
|
x = x.transpose(1, -1)
|
||||||
|
|
||||||
|
h = self.fc(s)
|
||||||
|
h = h.view(h.size(0), h.size(1), 1)
|
||||||
|
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
||||||
|
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
||||||
|
|
||||||
|
|
||||||
|
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
||||||
|
x = (1 + gamma) * x + beta
|
||||||
|
return x.transpose(1, -1).transpose(-1, -2)
|
||||||
|
|
||||||
|
class ProsodyPredictor(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.text_encoder = DurationEncoder(sty_dim=style_dim,
|
||||||
|
d_model=d_hid,
|
||||||
|
nlayers=nlayers,
|
||||||
|
dropout=dropout)
|
||||||
|
|
||||||
|
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
||||||
|
self.duration_proj = LinearNorm(d_hid, max_dur)
|
||||||
|
|
||||||
|
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
||||||
|
self.F0 = nn.ModuleList()
|
||||||
|
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
||||||
|
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
||||||
|
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
||||||
|
|
||||||
|
self.N = nn.ModuleList()
|
||||||
|
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
||||||
|
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
||||||
|
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
||||||
|
|
||||||
|
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
||||||
|
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
||||||
|
|
||||||
|
|
||||||
|
def forward(self, texts, style, text_lengths, alignment, m):
|
||||||
|
d = self.text_encoder(texts, style, text_lengths, m)
|
||||||
|
|
||||||
|
batch_size = d.shape[0]
|
||||||
|
text_size = d.shape[1]
|
||||||
|
|
||||||
|
# predict duration
|
||||||
|
input_lengths = text_lengths.cpu().numpy()
|
||||||
|
x = nn.utils.rnn.pack_padded_sequence(
|
||||||
|
d, input_lengths, batch_first=True, enforce_sorted=False)
|
||||||
|
|
||||||
|
m = m.to(text_lengths.device).unsqueeze(1)
|
||||||
|
|
||||||
|
self.lstm.flatten_parameters()
|
||||||
|
x, _ = self.lstm(x)
|
||||||
|
x, _ = nn.utils.rnn.pad_packed_sequence(
|
||||||
|
x, batch_first=True)
|
||||||
|
|
||||||
|
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
|
||||||
|
|
||||||
|
x_pad[:, :x.shape[1], :] = x
|
||||||
|
x = x_pad.to(x.device)
|
||||||
|
|
||||||
|
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
|
||||||
|
|
||||||
|
en = (d.transpose(-1, -2) @ alignment)
|
||||||
|
|
||||||
|
return duration.squeeze(-1), en
|
||||||
|
|
||||||
|
def F0Ntrain(self, x, s):
|
||||||
|
x, _ = self.shared(x.transpose(-1, -2))
|
||||||
|
|
||||||
|
F0 = x.transpose(-1, -2)
|
||||||
|
for block in self.F0:
|
||||||
|
F0 = block(F0, s)
|
||||||
|
F0 = self.F0_proj(F0)
|
||||||
|
|
||||||
|
N = x.transpose(-1, -2)
|
||||||
|
for block in self.N:
|
||||||
|
N = block(N, s)
|
||||||
|
N = self.N_proj(N)
|
||||||
|
|
||||||
|
return F0.squeeze(1), N.squeeze(1)
|
||||||
|
|
||||||
|
def length_to_mask(self, lengths):
|
||||||
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||||
|
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||||
|
return mask
|
||||||
|
|
||||||
|
class DurationEncoder(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
||||||
|
super().__init__()
|
||||||
|
self.lstms = nn.ModuleList()
|
||||||
|
for _ in range(nlayers):
|
||||||
|
self.lstms.append(nn.LSTM(d_model + sty_dim,
|
||||||
|
d_model // 2,
|
||||||
|
num_layers=1,
|
||||||
|
batch_first=True,
|
||||||
|
bidirectional=True,
|
||||||
|
dropout=dropout))
|
||||||
|
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
|
||||||
|
|
||||||
|
|
||||||
|
self.dropout = dropout
|
||||||
|
self.d_model = d_model
|
||||||
|
self.sty_dim = sty_dim
|
||||||
|
|
||||||
|
def forward(self, x, style, text_lengths, m):
|
||||||
|
masks = m.to(text_lengths.device)
|
||||||
|
|
||||||
|
x = x.permute(2, 0, 1)
|
||||||
|
s = style.expand(x.shape[0], x.shape[1], -1)
|
||||||
|
x = torch.cat([x, s], axis=-1)
|
||||||
|
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
|
||||||
|
|
||||||
|
x = x.transpose(0, 1)
|
||||||
|
input_lengths = text_lengths.cpu().numpy()
|
||||||
|
x = x.transpose(-1, -2)
|
||||||
|
|
||||||
|
for block in self.lstms:
|
||||||
|
if isinstance(block, AdaLayerNorm):
|
||||||
|
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
|
||||||
|
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
|
||||||
|
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
|
||||||
|
else:
|
||||||
|
x = x.transpose(-1, -2)
|
||||||
|
x = nn.utils.rnn.pack_padded_sequence(
|
||||||
|
x, input_lengths, batch_first=True, enforce_sorted=False)
|
||||||
|
block.flatten_parameters()
|
||||||
|
x, _ = block(x)
|
||||||
|
x, _ = nn.utils.rnn.pad_packed_sequence(
|
||||||
|
x, batch_first=True)
|
||||||
|
x = F.dropout(x, p=self.dropout, training=self.training)
|
||||||
|
x = x.transpose(-1, -2)
|
||||||
|
|
||||||
|
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
||||||
|
|
||||||
|
x_pad[:, :, :x.shape[-1]] = x
|
||||||
|
x = x_pad.to(x.device)
|
||||||
|
|
||||||
|
return x.transpose(-1, -2)
|
||||||
|
|
||||||
|
def inference(self, x, style):
|
||||||
|
x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model)
|
||||||
|
style = style.expand(x.shape[0], x.shape[1], -1)
|
||||||
|
x = torch.cat([x, style], axis=-1)
|
||||||
|
src = self.pos_encoder(x)
|
||||||
|
output = self.transformer_encoder(src).transpose(0, 1)
|
||||||
|
return output
|
||||||
|
|
||||||
|
def length_to_mask(self, lengths):
|
||||||
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||||
|
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||||
|
return mask
|
||||||
|
|
||||||
|
# https://github.com/yl4579/StyleTTS2/blob/main/utils.py
|
||||||
|
def recursive_munch(d):
|
||||||
|
if isinstance(d, dict):
|
||||||
|
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
||||||
|
elif isinstance(d, list):
|
||||||
|
return [recursive_munch(v) for v in d]
|
||||||
|
else:
|
||||||
|
return d
|
||||||
|
|
||||||
|
def build_model(path, device):
|
||||||
|
config = Path(__file__).parent / 'config.json'
|
||||||
|
assert config.exists(), f'Config path incorrect: config.json not found at {config}'
|
||||||
|
with open(config, 'r') as r:
|
||||||
|
args = recursive_munch(json.load(r))
|
||||||
|
assert args.decoder.type == 'istftnet', f'Unknown decoder type: {args.decoder.type}'
|
||||||
|
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
||||||
|
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
||||||
|
upsample_rates = args.decoder.upsample_rates,
|
||||||
|
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
||||||
|
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
||||||
|
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
|
||||||
|
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
|
||||||
|
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
|
||||||
|
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
|
||||||
|
bert = load_plbert()
|
||||||
|
bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim)
|
||||||
|
for parent in [bert, bert_encoder, predictor, decoder, text_encoder]:
|
||||||
|
for child in parent.children():
|
||||||
|
if isinstance(child, nn.RNNBase):
|
||||||
|
child.flatten_parameters()
|
||||||
|
model = Munch(
|
||||||
|
bert=bert.to(device).eval(),
|
||||||
|
bert_encoder=bert_encoder.to(device).eval(),
|
||||||
|
predictor=predictor.to(device).eval(),
|
||||||
|
decoder=decoder.to(device).eval(),
|
||||||
|
text_encoder=text_encoder.to(device).eval(),
|
||||||
|
)
|
||||||
|
for key, state_dict in torch.load(path, map_location='cpu', weights_only=True)['net'].items():
|
||||||
|
assert key in model, key
|
||||||
|
try:
|
||||||
|
model[key].load_state_dict(state_dict)
|
||||||
|
except:
|
||||||
|
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
||||||
|
model[key].load_state_dict(state_dict, strict=False)
|
||||||
|
return model
|
6
backend/python/kokoro/protogen.sh
Normal file
6
backend/python/kokoro/protogen.sh
Normal file
|
@ -0,0 +1,6 @@
|
||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
|
||||||
|
source $(dirname $0)/../common/libbackend.sh
|
||||||
|
|
||||||
|
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
2
backend/python/kokoro/requirements-cpu.txt
Normal file
2
backend/python/kokoro/requirements-cpu.txt
Normal file
|
@ -0,0 +1,2 @@
|
||||||
|
torch==2.4.1
|
||||||
|
transformers
|
3
backend/python/kokoro/requirements-cublas11.txt
Normal file
3
backend/python/kokoro/requirements-cublas11.txt
Normal file
|
@ -0,0 +1,3 @@
|
||||||
|
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||||
|
torch==2.4.1+cu118
|
||||||
|
transformers
|
2
backend/python/kokoro/requirements-cublas12.txt
Normal file
2
backend/python/kokoro/requirements-cublas12.txt
Normal file
|
@ -0,0 +1,2 @@
|
||||||
|
torch==2.4.1
|
||||||
|
transformers
|
3
backend/python/kokoro/requirements-hipblas.txt
Normal file
3
backend/python/kokoro/requirements-hipblas.txt
Normal file
|
@ -0,0 +1,3 @@
|
||||||
|
--extra-index-url https://download.pytorch.org/whl/rocm6.0
|
||||||
|
torch==2.4.1+rocm6.0
|
||||||
|
transformers
|
5
backend/python/kokoro/requirements-intel.txt
Normal file
5
backend/python/kokoro/requirements-intel.txt
Normal file
|
@ -0,0 +1,5 @@
|
||||||
|
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||||
|
intel-extension-for-pytorch==2.3.110+xpu
|
||||||
|
torch==2.3.1+cxx11.abi
|
||||||
|
oneccl_bind_pt==2.3.100+xpu
|
||||||
|
transformers
|
7
backend/python/kokoro/requirements.txt
Normal file
7
backend/python/kokoro/requirements.txt
Normal file
|
@ -0,0 +1,7 @@
|
||||||
|
grpcio==1.69.0
|
||||||
|
protobuf
|
||||||
|
phonemizer
|
||||||
|
scipy
|
||||||
|
munch
|
||||||
|
setuptools
|
||||||
|
soundfile
|
4
backend/python/kokoro/run.sh
Executable file
4
backend/python/kokoro/run.sh
Executable file
|
@ -0,0 +1,4 @@
|
||||||
|
#!/bin/bash
|
||||||
|
source $(dirname $0)/../common/libbackend.sh
|
||||||
|
|
||||||
|
startBackend $@
|
6
backend/python/kokoro/test.sh
Executable file
6
backend/python/kokoro/test.sh
Executable file
|
@ -0,0 +1,6 @@
|
||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
|
||||||
|
source $(dirname $0)/../common/libbackend.sh
|
||||||
|
|
||||||
|
runUnittests
|
Loading…
Add table
Add a link
Reference in a new issue