Add implement of tiny and update env

Signed-off-by: GitHub <noreply@github.com>
This commit is contained in:
Aisuko 2023-11-06 23:58:38 +00:00 committed by GitHub
parent edcae7a5f1
commit ca735e7ffc
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 68 additions and 4 deletions

View file

@ -17,7 +17,7 @@ import grpc
import torch
from functools import partial
from segment_anything_hq import SamAutomaticMaskGenerator
from segment_anything_hq.modeling import ImageEncoderViT, MaskDecoderHQ, PromptEncoder, Sam, TwoWayTransformer
from segment_anything_hq.modeling import ImageEncoderViT, MaskDecoderHQ, PromptEncoder, Sam, TwoWayTransformer, TinyViT
import matplotlib.pyplot as plt
import numpy as np
@ -54,8 +54,8 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
model_name = request.model_name
if model_name not in SamModelType.__dict__.keys():
raise Exception(f"Model name {model_name} not found in {SamModelType.__dict__.keys()}")
model_path = request.model_path
# check the model_path is valid
if not os.path.exists(model_path):
raise Exception(f"Model path {model_path} does not exist")
@ -69,8 +69,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
case SamModelType.vit_b:
sam = _build_sam_vit_b(checkpoint=model_path)
case SamModelType.vit_tiny:
# TODO: Implement this
pass
sam = _build_sam_vit_tiny(checkpoint=model_path)
case _:
raise Exception(f"Model name {model_name} not found in {SamModelType.__dict__.keys()}")
# TODO No sure if this is the right way to do it
@ -163,6 +162,57 @@ def _build_sam_vit_l(checkpoint=None):
def _build_sam_vit_b(checkpoint=None):
return _constrcut_sam(encoder_embed_dim=768,encoder_depth=12,encoder_num_heads=12,encoder_global_attn_indexes=[2,5,8,11],checkpoint=checkpoint)
def _build_sam_vit_tiny(checkpoint=None):
image_embedding_size = IMAGE_SIZE // VIT_PATCH_SIZE
mobile_sam = Sam(
image_encoder=TinyViT(img_size=1024, in_chans=3, num_classes=1000,
embed_dims=[64, 128, 160, 320],
depths=[2, 2, 6, 2],
num_heads=[2, 4, 5, 10],
window_sizes=[7, 7, 14, 7],
mlp_ratio=4.,
drop_rate=0.,
drop_path_rate=0.0,
use_checkpoint=False,
mbconv_expand_ratio=4.0,
local_conv_size=3,
layer_lr_decay=0.8
),
prompt_encoder=PromptEncoder(
embed_dim=PROMT_EMBED_DIM,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(IMAGE_SIZE, IMAGE_SIZE),
mask_in_chans=16,
),
mask_decoder=MaskDecoderHQ(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=PROMT_EMBED_DIM,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=PROMT_EMBED_DIM,
iou_head_depth=3,
iou_head_hidden_dim=256,
vit_dim=160,
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
mobile_sam.eval()
if checkpoint is not None:
with open(checkpoint, "rb") as f:
device = "cuda" if torch.cuda.is_available() else "cpu"
state_dict = torch.load(f, map_location=device)
info = mobile_sam.load_state_dict(state_dict, strict=False)
print(info)
for n, p in mobile_sam.named_parameters():
if 'hf_token' not in n and 'hf_mlp' not in n and 'compress_vit_feat' not in n and 'embedding_encoder' not in n and 'embedding_maskfeature' not in n:
p.requires_grad = False
return mobile_sam
def masks_to_image(anns, request):
if len(anns)==0:
return