mirror of
https://github.com/mudler/LocalAI.git
synced 2025-05-22 19:44:59 +00:00
feat: config files and SSE (#83)
Signed-off-by: mudler <mudler@mocaccino.org> Signed-off-by: Tyler Gillson <tyler.gillson@gmail.com> Co-authored-by: Tyler Gillson <tyler.gillson@gmail.com>
This commit is contained in:
parent
4e2061636e
commit
c806eae0de
22 changed files with 984 additions and 419 deletions
188
api/prediction.go
Normal file
188
api/prediction.go
Normal file
|
@ -0,0 +1,188 @@
|
|||
package api
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"sync"
|
||||
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
gpt2 "github.com/go-skynet/go-gpt2.cpp"
|
||||
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
|
||||
llama "github.com/go-skynet/go-llama.cpp"
|
||||
)
|
||||
|
||||
// mutex still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
var mutexMap sync.Mutex
|
||||
var mutexes map[string]*sync.Mutex = make(map[string]*sync.Mutex)
|
||||
|
||||
func ModelInference(s string, loader *model.ModelLoader, c Config) (func() (string, error), error) {
|
||||
var model *llama.LLama
|
||||
var gptModel *gptj.GPTJ
|
||||
var gpt2Model *gpt2.GPT2
|
||||
var stableLMModel *gpt2.StableLM
|
||||
|
||||
modelFile := c.Model
|
||||
|
||||
// Try to load the model
|
||||
var llamaerr, gpt2err, gptjerr, stableerr error
|
||||
llamaOpts := []llama.ModelOption{}
|
||||
if c.ContextSize != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetContext(c.ContextSize))
|
||||
}
|
||||
if c.F16 {
|
||||
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
|
||||
}
|
||||
|
||||
// TODO: this is ugly, better identifying the model somehow! however, it is a good stab for a first implementation..
|
||||
model, llamaerr = loader.LoadLLaMAModel(modelFile, llamaOpts...)
|
||||
if llamaerr != nil {
|
||||
gptModel, gptjerr = loader.LoadGPTJModel(modelFile)
|
||||
if gptjerr != nil {
|
||||
gpt2Model, gpt2err = loader.LoadGPT2Model(modelFile)
|
||||
if gpt2err != nil {
|
||||
stableLMModel, stableerr = loader.LoadStableLMModel(modelFile)
|
||||
if stableerr != nil {
|
||||
return nil, fmt.Errorf("llama: %s gpt: %s gpt2: %s stableLM: %s", llamaerr.Error(), gptjerr.Error(), gpt2err.Error(), stableerr.Error()) // llama failed first, so we want to catch both errors
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
var fn func() (string, error)
|
||||
|
||||
switch {
|
||||
case stableLMModel != nil:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []gpt2.PredictOption{
|
||||
gpt2.SetTemperature(c.Temperature),
|
||||
gpt2.SetTopP(c.TopP),
|
||||
gpt2.SetTopK(c.TopK),
|
||||
gpt2.SetTokens(c.Maxtokens),
|
||||
gpt2.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return stableLMModel.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case gpt2Model != nil:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []gpt2.PredictOption{
|
||||
gpt2.SetTemperature(c.Temperature),
|
||||
gpt2.SetTopP(c.TopP),
|
||||
gpt2.SetTopK(c.TopK),
|
||||
gpt2.SetTokens(c.Maxtokens),
|
||||
gpt2.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return gpt2Model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case gptModel != nil:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []gptj.PredictOption{
|
||||
gptj.SetTemperature(c.Temperature),
|
||||
gptj.SetTopP(c.TopP),
|
||||
gptj.SetTopK(c.TopK),
|
||||
gptj.SetTokens(c.Maxtokens),
|
||||
gptj.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, gptj.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, gptj.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return gptModel.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case model != nil:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []llama.PredictOption{
|
||||
llama.SetTemperature(c.Temperature),
|
||||
llama.SetTopP(c.TopP),
|
||||
llama.SetTopK(c.TopK),
|
||||
llama.SetTokens(c.Maxtokens),
|
||||
llama.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Debug {
|
||||
predictOptions = append(predictOptions, llama.Debug)
|
||||
}
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetStopWords(c.StopWords...))
|
||||
|
||||
if c.RepeatPenalty != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetPenalty(c.RepeatPenalty))
|
||||
}
|
||||
|
||||
if c.Keep != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetNKeep(c.Keep))
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.F16 {
|
||||
predictOptions = append(predictOptions, llama.EnableF16KV)
|
||||
}
|
||||
|
||||
if c.IgnoreEOS {
|
||||
predictOptions = append(predictOptions, llama.IgnoreEOS)
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
return func() (string, error) {
|
||||
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
mutexMap.Lock()
|
||||
l, ok := mutexes[modelFile]
|
||||
if !ok {
|
||||
m := &sync.Mutex{}
|
||||
mutexes[modelFile] = m
|
||||
l = m
|
||||
}
|
||||
mutexMap.Unlock()
|
||||
l.Lock()
|
||||
defer l.Unlock()
|
||||
|
||||
return fn()
|
||||
}, nil
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue