mirror of
https://github.com/mudler/LocalAI.git
synced 2025-05-28 14:35:00 +00:00
feat: config files and SSE (#83)
Signed-off-by: mudler <mudler@mocaccino.org> Signed-off-by: Tyler Gillson <tyler.gillson@gmail.com> Co-authored-by: Tyler Gillson <tyler.gillson@gmail.com>
This commit is contained in:
parent
4e2061636e
commit
c806eae0de
22 changed files with 984 additions and 419 deletions
409
api/api.go
409
api/api.go
|
@ -1,16 +1,9 @@
|
|||
package api
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
gpt2 "github.com/go-skynet/go-gpt2.cpp"
|
||||
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
|
||||
llama "github.com/go-skynet/go-llama.cpp"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/gofiber/fiber/v2/middleware/cors"
|
||||
"github.com/gofiber/fiber/v2/middleware/recover"
|
||||
|
@ -18,375 +11,7 @@ import (
|
|||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
// APIError provides error information returned by the OpenAI API.
|
||||
type APIError struct {
|
||||
Code any `json:"code,omitempty"`
|
||||
Message string `json:"message"`
|
||||
Param *string `json:"param,omitempty"`
|
||||
Type string `json:"type"`
|
||||
}
|
||||
|
||||
type ErrorResponse struct {
|
||||
Error *APIError `json:"error,omitempty"`
|
||||
}
|
||||
|
||||
type OpenAIResponse struct {
|
||||
Created int `json:"created,omitempty"`
|
||||
Object string `json:"chat.completion,omitempty"`
|
||||
ID string `json:"id,omitempty"`
|
||||
Model string `json:"model,omitempty"`
|
||||
Choices []Choice `json:"choices,omitempty"`
|
||||
}
|
||||
|
||||
type Choice struct {
|
||||
Index int `json:"index,omitempty"`
|
||||
FinishReason string `json:"finish_reason,omitempty"`
|
||||
Message *Message `json:"message,omitempty"`
|
||||
Text string `json:"text,omitempty"`
|
||||
}
|
||||
|
||||
type Message struct {
|
||||
Role string `json:"role,omitempty"`
|
||||
Content string `json:"content,omitempty"`
|
||||
}
|
||||
|
||||
type OpenAIModel struct {
|
||||
ID string `json:"id"`
|
||||
Object string `json:"object"`
|
||||
}
|
||||
|
||||
type OpenAIRequest struct {
|
||||
Model string `json:"model"`
|
||||
|
||||
// Prompt is read only by completion API calls
|
||||
Prompt string `json:"prompt"`
|
||||
|
||||
Stop string `json:"stop"`
|
||||
|
||||
// Messages is read only by chat/completion API calls
|
||||
Messages []Message `json:"messages"`
|
||||
|
||||
Echo bool `json:"echo"`
|
||||
// Common options between all the API calls
|
||||
TopP float64 `json:"top_p"`
|
||||
TopK int `json:"top_k"`
|
||||
Temperature float64 `json:"temperature"`
|
||||
Maxtokens int `json:"max_tokens"`
|
||||
|
||||
N int `json:"n"`
|
||||
|
||||
// Custom parameters - not present in the OpenAI API
|
||||
Batch int `json:"batch"`
|
||||
F16 bool `json:"f16kv"`
|
||||
IgnoreEOS bool `json:"ignore_eos"`
|
||||
RepeatPenalty float64 `json:"repeat_penalty"`
|
||||
Keep int `json:"n_keep"`
|
||||
|
||||
Seed int `json:"seed"`
|
||||
}
|
||||
|
||||
// https://platform.openai.com/docs/api-reference/completions
|
||||
func openAIEndpoint(chat, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool, mutexMap *sync.Mutex, mutexes map[string]*sync.Mutex) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
var err error
|
||||
var model *llama.LLama
|
||||
var gptModel *gptj.GPTJ
|
||||
var gpt2Model *gpt2.GPT2
|
||||
var stableLMModel *gpt2.StableLM
|
||||
|
||||
input := new(OpenAIRequest)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
modelFile := input.Model
|
||||
received, _ := json.Marshal(input)
|
||||
|
||||
log.Debug().Msgf("Request received: %s", string(received))
|
||||
|
||||
// Set model from bearer token, if available
|
||||
bearer := strings.TrimLeft(c.Get("authorization"), "Bearer ")
|
||||
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
|
||||
|
||||
// If no model was specified, take the first available
|
||||
if modelFile == "" {
|
||||
models, _ := loader.ListModels()
|
||||
if len(models) > 0 {
|
||||
modelFile = models[0]
|
||||
log.Debug().Msgf("No model specified, using: %s", modelFile)
|
||||
}
|
||||
}
|
||||
|
||||
// If no model is found or specified, we bail out
|
||||
if modelFile == "" && !bearerExists {
|
||||
return fmt.Errorf("no model specified")
|
||||
}
|
||||
|
||||
// If a model is found in bearer token takes precedence
|
||||
if bearerExists {
|
||||
log.Debug().Msgf("Using model from bearer token: %s", bearer)
|
||||
modelFile = bearer
|
||||
}
|
||||
|
||||
// Try to load the model
|
||||
var llamaerr, gpt2err, gptjerr, stableerr error
|
||||
llamaOpts := []llama.ModelOption{}
|
||||
if ctx != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetContext(ctx))
|
||||
}
|
||||
if f16 {
|
||||
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
|
||||
}
|
||||
|
||||
// TODO: this is ugly, better identifying the model somehow! however, it is a good stab for a first implementation..
|
||||
model, llamaerr = loader.LoadLLaMAModel(modelFile, llamaOpts...)
|
||||
if llamaerr != nil {
|
||||
gptModel, gptjerr = loader.LoadGPTJModel(modelFile)
|
||||
if gptjerr != nil {
|
||||
gpt2Model, gpt2err = loader.LoadGPT2Model(modelFile)
|
||||
if gpt2err != nil {
|
||||
stableLMModel, stableerr = loader.LoadStableLMModel(modelFile)
|
||||
if stableerr != nil {
|
||||
return fmt.Errorf("llama: %s gpt: %s gpt2: %s stableLM: %s", llamaerr.Error(), gptjerr.Error(), gpt2err.Error(), stableerr.Error()) // llama failed first, so we want to catch both errors
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
mutexMap.Lock()
|
||||
l, ok := mutexes[modelFile]
|
||||
if !ok {
|
||||
m := &sync.Mutex{}
|
||||
mutexes[modelFile] = m
|
||||
l = m
|
||||
}
|
||||
mutexMap.Unlock()
|
||||
l.Lock()
|
||||
defer l.Unlock()
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
topP := input.TopP
|
||||
if topP == 0 {
|
||||
topP = 0.7
|
||||
}
|
||||
topK := input.TopK
|
||||
if topK == 0 {
|
||||
topK = 80
|
||||
}
|
||||
|
||||
temperature := input.Temperature
|
||||
if temperature == 0 {
|
||||
temperature = 0.9
|
||||
}
|
||||
|
||||
tokens := input.Maxtokens
|
||||
if tokens == 0 {
|
||||
tokens = 512
|
||||
}
|
||||
|
||||
predInput := input.Prompt
|
||||
if chat {
|
||||
mess := []string{}
|
||||
// TODO: encode roles
|
||||
for _, i := range input.Messages {
|
||||
mess = append(mess, i.Content)
|
||||
}
|
||||
|
||||
predInput = strings.Join(mess, "\n")
|
||||
}
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := loader.TemplatePrefix(modelFile, struct {
|
||||
Input string
|
||||
}{Input: predInput})
|
||||
if err == nil {
|
||||
predInput = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
||||
}
|
||||
|
||||
result := []Choice{}
|
||||
|
||||
n := input.N
|
||||
|
||||
if input.N == 0 {
|
||||
n = 1
|
||||
}
|
||||
|
||||
var predFunc func() (string, error)
|
||||
switch {
|
||||
case stableLMModel != nil:
|
||||
predFunc = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []gpt2.PredictOption{
|
||||
gpt2.SetTemperature(temperature),
|
||||
gpt2.SetTopP(topP),
|
||||
gpt2.SetTopK(topK),
|
||||
gpt2.SetTokens(tokens),
|
||||
gpt2.SetThreads(threads),
|
||||
}
|
||||
|
||||
if input.Batch != 0 {
|
||||
predictOptions = append(predictOptions, gpt2.SetBatch(input.Batch))
|
||||
}
|
||||
|
||||
if input.Seed != 0 {
|
||||
predictOptions = append(predictOptions, gpt2.SetSeed(input.Seed))
|
||||
}
|
||||
|
||||
return stableLMModel.Predict(
|
||||
predInput,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case gpt2Model != nil:
|
||||
predFunc = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []gpt2.PredictOption{
|
||||
gpt2.SetTemperature(temperature),
|
||||
gpt2.SetTopP(topP),
|
||||
gpt2.SetTopK(topK),
|
||||
gpt2.SetTokens(tokens),
|
||||
gpt2.SetThreads(threads),
|
||||
}
|
||||
|
||||
if input.Batch != 0 {
|
||||
predictOptions = append(predictOptions, gpt2.SetBatch(input.Batch))
|
||||
}
|
||||
|
||||
if input.Seed != 0 {
|
||||
predictOptions = append(predictOptions, gpt2.SetSeed(input.Seed))
|
||||
}
|
||||
|
||||
return gpt2Model.Predict(
|
||||
predInput,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case gptModel != nil:
|
||||
predFunc = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []gptj.PredictOption{
|
||||
gptj.SetTemperature(temperature),
|
||||
gptj.SetTopP(topP),
|
||||
gptj.SetTopK(topK),
|
||||
gptj.SetTokens(tokens),
|
||||
gptj.SetThreads(threads),
|
||||
}
|
||||
|
||||
if input.Batch != 0 {
|
||||
predictOptions = append(predictOptions, gptj.SetBatch(input.Batch))
|
||||
}
|
||||
|
||||
if input.Seed != 0 {
|
||||
predictOptions = append(predictOptions, gptj.SetSeed(input.Seed))
|
||||
}
|
||||
|
||||
return gptModel.Predict(
|
||||
predInput,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case model != nil:
|
||||
predFunc = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []llama.PredictOption{
|
||||
llama.SetTemperature(temperature),
|
||||
llama.SetTopP(topP),
|
||||
llama.SetTopK(topK),
|
||||
llama.SetTokens(tokens),
|
||||
llama.SetThreads(threads),
|
||||
}
|
||||
|
||||
if debug {
|
||||
predictOptions = append(predictOptions, llama.Debug)
|
||||
}
|
||||
|
||||
if input.Stop != "" {
|
||||
predictOptions = append(predictOptions, llama.SetStopWords(input.Stop))
|
||||
}
|
||||
|
||||
if input.RepeatPenalty != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetPenalty(input.RepeatPenalty))
|
||||
}
|
||||
|
||||
if input.Keep != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetNKeep(input.Keep))
|
||||
}
|
||||
|
||||
if input.Batch != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetBatch(input.Batch))
|
||||
}
|
||||
|
||||
if input.F16 {
|
||||
predictOptions = append(predictOptions, llama.EnableF16KV)
|
||||
}
|
||||
|
||||
if input.IgnoreEOS {
|
||||
predictOptions = append(predictOptions, llama.IgnoreEOS)
|
||||
}
|
||||
|
||||
if input.Seed != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetSeed(input.Seed))
|
||||
}
|
||||
|
||||
return model.Predict(
|
||||
predInput,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
prediction, err := predFunc()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if input.Echo {
|
||||
prediction = predInput + prediction
|
||||
}
|
||||
|
||||
if chat {
|
||||
result = append(result, Choice{Message: &Message{Role: "assistant", Content: prediction}})
|
||||
} else {
|
||||
result = append(result, Choice{Text: prediction})
|
||||
}
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(result)
|
||||
log.Debug().Msgf("Response: %s", jsonResult)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(OpenAIResponse{
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func listModels(loader *model.ModelLoader) func(ctx *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
models, err := loader.ListModels()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
dataModels := []OpenAIModel{}
|
||||
for _, m := range models {
|
||||
dataModels = append(dataModels, OpenAIModel{ID: m, Object: "model"})
|
||||
}
|
||||
return c.JSON(struct {
|
||||
Object string `json:"object"`
|
||||
Data []OpenAIModel `json:"data"`
|
||||
}{
|
||||
Object: "list",
|
||||
Data: dataModels,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func App(loader *model.ModelLoader, threads, ctxSize int, f16 bool, debug, disableMessage bool) *fiber.App {
|
||||
func App(configFile string, loader *model.ModelLoader, threads, ctxSize int, f16 bool, debug, disableMessage bool) *fiber.App {
|
||||
zerolog.SetGlobalLevel(zerolog.InfoLevel)
|
||||
if debug {
|
||||
zerolog.SetGlobalLevel(zerolog.DebugLevel)
|
||||
|
@ -415,23 +40,35 @@ func App(loader *model.ModelLoader, threads, ctxSize int, f16 bool, debug, disab
|
|||
},
|
||||
})
|
||||
|
||||
cm := make(ConfigMerger)
|
||||
if err := cm.LoadConfigs(loader.ModelPath); err != nil {
|
||||
log.Error().Msgf("error loading config files: %s", err.Error())
|
||||
}
|
||||
|
||||
if configFile != "" {
|
||||
if err := cm.LoadConfigFile(configFile); err != nil {
|
||||
log.Error().Msgf("error loading config file: %s", err.Error())
|
||||
}
|
||||
}
|
||||
|
||||
if debug {
|
||||
for k, v := range cm {
|
||||
log.Debug().Msgf("Model: %s (config: %+v)", k, v)
|
||||
}
|
||||
}
|
||||
// Default middleware config
|
||||
app.Use(recover.New())
|
||||
app.Use(cors.New())
|
||||
|
||||
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
mu := map[string]*sync.Mutex{}
|
||||
var mumutex = &sync.Mutex{}
|
||||
|
||||
// openAI compatible API endpoint
|
||||
app.Post("/v1/chat/completions", openAIEndpoint(true, debug, loader, threads, ctxSize, f16, mumutex, mu))
|
||||
app.Post("/chat/completions", openAIEndpoint(true, debug, loader, threads, ctxSize, f16, mumutex, mu))
|
||||
app.Post("/v1/chat/completions", openAIEndpoint(cm, true, debug, loader, threads, ctxSize, f16))
|
||||
app.Post("/chat/completions", openAIEndpoint(cm, true, debug, loader, threads, ctxSize, f16))
|
||||
|
||||
app.Post("/v1/completions", openAIEndpoint(false, debug, loader, threads, ctxSize, f16, mumutex, mu))
|
||||
app.Post("/completions", openAIEndpoint(false, debug, loader, threads, ctxSize, f16, mumutex, mu))
|
||||
app.Post("/v1/completions", openAIEndpoint(cm, false, debug, loader, threads, ctxSize, f16))
|
||||
app.Post("/completions", openAIEndpoint(cm, false, debug, loader, threads, ctxSize, f16))
|
||||
|
||||
app.Get("/v1/models", listModels(loader))
|
||||
app.Get("/models", listModels(loader))
|
||||
app.Get("/v1/models", listModels(loader, cm))
|
||||
app.Get("/models", listModels(loader, cm))
|
||||
|
||||
return app
|
||||
}
|
||||
|
|
|
@ -21,7 +21,7 @@ var _ = Describe("API test", func() {
|
|||
Context("API query", func() {
|
||||
BeforeEach(func() {
|
||||
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
|
||||
app = App(modelLoader, 1, 512, false, false, true)
|
||||
app = App("", modelLoader, 1, 512, false, true, true)
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
|
||||
defaultConfig := openai.DefaultConfig("")
|
||||
|
@ -40,7 +40,7 @@ var _ = Describe("API test", func() {
|
|||
It("returns the models list", func() {
|
||||
models, err := client.ListModels(context.TODO())
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(models.Models)).To(Equal(1))
|
||||
Expect(len(models.Models)).To(Equal(3))
|
||||
Expect(models.Models[0].ID).To(Equal("testmodel"))
|
||||
})
|
||||
It("can generate completions", func() {
|
||||
|
@ -49,10 +49,73 @@ var _ = Describe("API test", func() {
|
|||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Text).ToNot(BeEmpty())
|
||||
})
|
||||
|
||||
It("can generate chat completions ", func() {
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "testmodel", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "abcdedfghikl"}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
})
|
||||
|
||||
It("can generate completions from model configs", func() {
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "gpt4all", Prompt: "abcdedfghikl"})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Text).ToNot(BeEmpty())
|
||||
})
|
||||
|
||||
It("can generate chat completions from model configs", func() {
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-2", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "abcdedfghikl"}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
})
|
||||
|
||||
It("returns errors", func() {
|
||||
_, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "foomodel", Prompt: "abcdedfghikl"})
|
||||
Expect(err).To(HaveOccurred())
|
||||
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: llama: model does not exist"))
|
||||
})
|
||||
|
||||
})
|
||||
|
||||
Context("Config file", func() {
|
||||
BeforeEach(func() {
|
||||
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
|
||||
app = App(os.Getenv("CONFIG_FILE"), modelLoader, 1, 512, false, true, true)
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
|
||||
defaultConfig := openai.DefaultConfig("")
|
||||
defaultConfig.BaseURL = "http://127.0.0.1:9090/v1"
|
||||
|
||||
// Wait for API to be ready
|
||||
client = openai.NewClientWithConfig(defaultConfig)
|
||||
Eventually(func() error {
|
||||
_, err := client.ListModels(context.TODO())
|
||||
return err
|
||||
}, "2m").ShouldNot(HaveOccurred())
|
||||
})
|
||||
AfterEach(func() {
|
||||
app.Shutdown()
|
||||
})
|
||||
It("can generate chat completions from config file", func() {
|
||||
|
||||
models, err := client.ListModels(context.TODO())
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(models.Models)).To(Equal(5))
|
||||
Expect(models.Models[0].ID).To(Equal("testmodel"))
|
||||
})
|
||||
It("can generate chat completions from config file", func() {
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list1", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "abcdedfghikl"}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
})
|
||||
It("can generate chat completions from config file", func() {
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list2", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "abcdedfghikl"}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
})
|
||||
})
|
||||
})
|
||||
|
|
100
api/config.go
Normal file
100
api/config.go
Normal file
|
@ -0,0 +1,100 @@
|
|||
package api
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io/ioutil"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
|
||||
"gopkg.in/yaml.v3"
|
||||
)
|
||||
|
||||
type Config struct {
|
||||
OpenAIRequest `yaml:"parameters"`
|
||||
Name string `yaml:"name"`
|
||||
StopWords []string `yaml:"stopwords"`
|
||||
Cutstrings []string `yaml:"cutstrings"`
|
||||
TrimSpace []string `yaml:"trimspace"`
|
||||
ContextSize int `yaml:"context_size"`
|
||||
F16 bool `yaml:"f16"`
|
||||
Threads int `yaml:"threads"`
|
||||
Debug bool `yaml:"debug"`
|
||||
Roles map[string]string `yaml:"roles"`
|
||||
TemplateConfig TemplateConfig `yaml:"template"`
|
||||
}
|
||||
|
||||
type TemplateConfig struct {
|
||||
Completion string `yaml:"completion"`
|
||||
Chat string `yaml:"chat"`
|
||||
}
|
||||
|
||||
type ConfigMerger map[string]Config
|
||||
|
||||
func ReadConfigFile(file string) ([]*Config, error) {
|
||||
c := &[]*Config{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
return *c, nil
|
||||
}
|
||||
|
||||
func ReadConfig(file string) (*Config, error) {
|
||||
c := &Config{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
return c, nil
|
||||
}
|
||||
|
||||
func (cm ConfigMerger) LoadConfigFile(file string) error {
|
||||
c, err := ReadConfigFile(file)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot load config file: %w", err)
|
||||
}
|
||||
|
||||
for _, cc := range c {
|
||||
cm[cc.Name] = *cc
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (cm ConfigMerger) LoadConfig(file string) error {
|
||||
c, err := ReadConfig(file)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
|
||||
cm[c.Name] = *c
|
||||
return nil
|
||||
}
|
||||
|
||||
func (cm ConfigMerger) LoadConfigs(path string) error {
|
||||
files, err := ioutil.ReadDir(path)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, file := range files {
|
||||
// Skip templates, YAML and .keep files
|
||||
if !strings.Contains(file.Name(), ".yaml") {
|
||||
continue
|
||||
}
|
||||
c, err := ReadConfig(filepath.Join(path, file.Name()))
|
||||
if err == nil {
|
||||
cm[c.Name] = *c
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
396
api/openai.go
Normal file
396
api/openai.go
Normal file
|
@ -0,0 +1,396 @@
|
|||
package api
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
"github.com/valyala/fasthttp"
|
||||
)
|
||||
|
||||
// APIError provides error information returned by the OpenAI API.
|
||||
type APIError struct {
|
||||
Code any `json:"code,omitempty"`
|
||||
Message string `json:"message"`
|
||||
Param *string `json:"param,omitempty"`
|
||||
Type string `json:"type"`
|
||||
}
|
||||
|
||||
type ErrorResponse struct {
|
||||
Error *APIError `json:"error,omitempty"`
|
||||
}
|
||||
|
||||
type OpenAIResponse struct {
|
||||
Created int `json:"created,omitempty"`
|
||||
Object string `json:"object,omitempty"`
|
||||
ID string `json:"id,omitempty"`
|
||||
Model string `json:"model,omitempty"`
|
||||
Choices []Choice `json:"choices,omitempty"`
|
||||
}
|
||||
|
||||
type Choice struct {
|
||||
Index int `json:"index,omitempty"`
|
||||
FinishReason string `json:"finish_reason,omitempty"`
|
||||
Message *Message `json:"message,omitempty"`
|
||||
Delta *Message `json:"delta,omitempty"`
|
||||
Text string `json:"text,omitempty"`
|
||||
}
|
||||
|
||||
type Message struct {
|
||||
Role string `json:"role,omitempty" yaml:"role"`
|
||||
Content string `json:"content,omitempty" yaml:"content"`
|
||||
}
|
||||
|
||||
type OpenAIModel struct {
|
||||
ID string `json:"id"`
|
||||
Object string `json:"object"`
|
||||
}
|
||||
|
||||
type OpenAIRequest struct {
|
||||
Model string `json:"model" yaml:"model"`
|
||||
|
||||
// Prompt is read only by completion API calls
|
||||
Prompt string `json:"prompt" yaml:"prompt"`
|
||||
|
||||
Stop string `json:"stop" yaml:"stop"`
|
||||
|
||||
// Messages is read only by chat/completion API calls
|
||||
Messages []Message `json:"messages" yaml:"messages"`
|
||||
|
||||
Stream bool `json:"stream"`
|
||||
Echo bool `json:"echo"`
|
||||
// Common options between all the API calls
|
||||
TopP float64 `json:"top_p" yaml:"top_p"`
|
||||
TopK int `json:"top_k" yaml:"top_k"`
|
||||
Temperature float64 `json:"temperature" yaml:"temperature"`
|
||||
Maxtokens int `json:"max_tokens" yaml:"max_tokens"`
|
||||
|
||||
N int `json:"n"`
|
||||
|
||||
// Custom parameters - not present in the OpenAI API
|
||||
Batch int `json:"batch" yaml:"batch"`
|
||||
F16 bool `json:"f16" yaml:"f16"`
|
||||
IgnoreEOS bool `json:"ignore_eos" yaml:"ignore_eos"`
|
||||
RepeatPenalty float64 `json:"repeat_penalty" yaml:"repeat_penalty"`
|
||||
Keep int `json:"n_keep" yaml:"n_keep"`
|
||||
|
||||
Seed int `json:"seed" yaml:"seed"`
|
||||
}
|
||||
|
||||
func defaultRequest(modelFile string) OpenAIRequest {
|
||||
return OpenAIRequest{
|
||||
TopP: 0.7,
|
||||
TopK: 80,
|
||||
Maxtokens: 512,
|
||||
Temperature: 0.9,
|
||||
Model: modelFile,
|
||||
}
|
||||
}
|
||||
|
||||
func updateConfig(config *Config, input *OpenAIRequest) {
|
||||
if input.Echo {
|
||||
config.Echo = input.Echo
|
||||
}
|
||||
if input.TopK != 0 {
|
||||
config.TopK = input.TopK
|
||||
}
|
||||
if input.TopP != 0 {
|
||||
config.TopP = input.TopP
|
||||
}
|
||||
|
||||
if input.Temperature != 0 {
|
||||
config.Temperature = input.Temperature
|
||||
}
|
||||
|
||||
if input.Maxtokens != 0 {
|
||||
config.Maxtokens = input.Maxtokens
|
||||
}
|
||||
|
||||
if input.Stop != "" {
|
||||
config.StopWords = append(config.StopWords, input.Stop)
|
||||
}
|
||||
|
||||
if input.RepeatPenalty != 0 {
|
||||
config.RepeatPenalty = input.RepeatPenalty
|
||||
}
|
||||
|
||||
if input.Keep != 0 {
|
||||
config.Keep = input.Keep
|
||||
}
|
||||
|
||||
if input.Batch != 0 {
|
||||
config.Batch = input.Batch
|
||||
}
|
||||
|
||||
if input.F16 {
|
||||
config.F16 = input.F16
|
||||
}
|
||||
|
||||
if input.IgnoreEOS {
|
||||
config.IgnoreEOS = input.IgnoreEOS
|
||||
}
|
||||
|
||||
if input.Seed != 0 {
|
||||
config.Seed = input.Seed
|
||||
}
|
||||
}
|
||||
|
||||
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
|
||||
var mu sync.Mutex = sync.Mutex{}
|
||||
|
||||
// https://platform.openai.com/docs/api-reference/completions
|
||||
func openAIEndpoint(cm ConfigMerger, chat, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
|
||||
input := new(OpenAIRequest)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if input.Stream {
|
||||
log.Debug().Msgf("Stream request received")
|
||||
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
|
||||
c.Set("Content-Type", "text/event-stream; charset=utf-8")
|
||||
c.Set("Cache-Control", "no-cache")
|
||||
c.Set("Connection", "keep-alive")
|
||||
c.Set("Transfer-Encoding", "chunked")
|
||||
}
|
||||
|
||||
modelFile := input.Model
|
||||
received, _ := json.Marshal(input)
|
||||
|
||||
log.Debug().Msgf("Request received: %s", string(received))
|
||||
|
||||
// Set model from bearer token, if available
|
||||
bearer := strings.TrimLeft(c.Get("authorization"), "Bearer ")
|
||||
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
|
||||
|
||||
// If no model was specified, take the first available
|
||||
if modelFile == "" && !bearerExists {
|
||||
models, _ := loader.ListModels()
|
||||
if len(models) > 0 {
|
||||
modelFile = models[0]
|
||||
log.Debug().Msgf("No model specified, using: %s", modelFile)
|
||||
} else {
|
||||
log.Debug().Msgf("No model specified, returning error")
|
||||
return fmt.Errorf("no model specified")
|
||||
}
|
||||
}
|
||||
|
||||
// If a model is found in bearer token takes precedence
|
||||
if bearerExists {
|
||||
log.Debug().Msgf("Using model from bearer token: %s", bearer)
|
||||
modelFile = bearer
|
||||
}
|
||||
|
||||
// Load a config file if present after the model name
|
||||
modelConfig := filepath.Join(loader.ModelPath, modelFile+".yaml")
|
||||
if _, err := os.Stat(modelConfig); err == nil {
|
||||
if err := cm.LoadConfig(modelConfig); err != nil {
|
||||
return fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
|
||||
}
|
||||
}
|
||||
|
||||
var config *Config
|
||||
cfg, exists := cm[modelFile]
|
||||
if !exists {
|
||||
config = &Config{
|
||||
OpenAIRequest: defaultRequest(modelFile),
|
||||
}
|
||||
} else {
|
||||
config = &cfg
|
||||
}
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
updateConfig(config, input)
|
||||
|
||||
if threads != 0 {
|
||||
config.Threads = threads
|
||||
}
|
||||
if ctx != 0 {
|
||||
config.ContextSize = ctx
|
||||
}
|
||||
if f16 {
|
||||
config.F16 = true
|
||||
}
|
||||
|
||||
if debug {
|
||||
config.Debug = true
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
|
||||
predInput := input.Prompt
|
||||
if chat {
|
||||
mess := []string{}
|
||||
for _, i := range input.Messages {
|
||||
r := config.Roles[i.Role]
|
||||
if r == "" {
|
||||
r = i.Role
|
||||
}
|
||||
|
||||
content := fmt.Sprint(r, " ", i.Content)
|
||||
mess = append(mess, content)
|
||||
}
|
||||
|
||||
predInput = strings.Join(mess, "\n")
|
||||
}
|
||||
|
||||
templateFile := config.Model
|
||||
if config.TemplateConfig.Chat != "" && chat {
|
||||
templateFile = config.TemplateConfig.Chat
|
||||
}
|
||||
|
||||
if config.TemplateConfig.Completion != "" && !chat {
|
||||
templateFile = config.TemplateConfig.Completion
|
||||
}
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := loader.TemplatePrefix(templateFile, struct {
|
||||
Input string
|
||||
}{Input: predInput})
|
||||
if err == nil {
|
||||
predInput = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
||||
}
|
||||
|
||||
result := []Choice{}
|
||||
|
||||
n := input.N
|
||||
|
||||
if input.N == 0 {
|
||||
n = 1
|
||||
}
|
||||
|
||||
// get the model function to call for the result
|
||||
predFunc, err := ModelInference(predInput, loader, *config)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
finetunePrediction := func(prediction string) string {
|
||||
if config.Echo {
|
||||
prediction = predInput + prediction
|
||||
}
|
||||
|
||||
for _, c := range config.Cutstrings {
|
||||
mu.Lock()
|
||||
reg, ok := cutstrings[c]
|
||||
if !ok {
|
||||
cutstrings[c] = regexp.MustCompile(c)
|
||||
reg = cutstrings[c]
|
||||
}
|
||||
mu.Unlock()
|
||||
prediction = reg.ReplaceAllString(prediction, "")
|
||||
}
|
||||
|
||||
for _, c := range config.TrimSpace {
|
||||
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
|
||||
}
|
||||
return prediction
|
||||
}
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
prediction, err := predFunc()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
prediction = finetunePrediction(prediction)
|
||||
|
||||
if chat {
|
||||
if input.Stream {
|
||||
result = append(result, Choice{Delta: &Message{Role: "assistant", Content: prediction}})
|
||||
} else {
|
||||
result = append(result, Choice{Message: &Message{Role: "assistant", Content: prediction}})
|
||||
}
|
||||
} else {
|
||||
result = append(result, Choice{Text: prediction})
|
||||
}
|
||||
}
|
||||
|
||||
resp := &OpenAIResponse{
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
}
|
||||
if input.Stream && chat {
|
||||
resp.Object = "chat.completion.chunk"
|
||||
} else if chat {
|
||||
resp.Object = "chat.completion"
|
||||
} else {
|
||||
resp.Object = "text_completion"
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", jsonResult)
|
||||
|
||||
if input.Stream {
|
||||
log.Debug().Msgf("Handling stream request")
|
||||
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
|
||||
fmt.Fprintf(w, "event: data\n")
|
||||
w.Flush()
|
||||
|
||||
fmt.Fprintf(w, "data: %s\n\n", jsonResult)
|
||||
w.Flush()
|
||||
|
||||
fmt.Fprintf(w, "event: data\n")
|
||||
w.Flush()
|
||||
|
||||
resp := &OpenAIResponse{
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []Choice{Choice{FinishReason: "stop"}},
|
||||
}
|
||||
respData, _ := json.Marshal(resp)
|
||||
|
||||
fmt.Fprintf(w, "data: %s\n\n", respData)
|
||||
w.Flush()
|
||||
|
||||
// fmt.Fprintf(w, "data: [DONE]\n\n")
|
||||
// w.Flush()
|
||||
}))
|
||||
return nil
|
||||
} else {
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func listModels(loader *model.ModelLoader, cm ConfigMerger) func(ctx *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
models, err := loader.ListModels()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
var mm map[string]interface{} = map[string]interface{}{}
|
||||
|
||||
dataModels := []OpenAIModel{}
|
||||
for _, m := range models {
|
||||
mm[m] = nil
|
||||
dataModels = append(dataModels, OpenAIModel{ID: m, Object: "model"})
|
||||
}
|
||||
|
||||
for k := range cm {
|
||||
if _, exists := mm[k]; !exists {
|
||||
dataModels = append(dataModels, OpenAIModel{ID: k, Object: "model"})
|
||||
}
|
||||
}
|
||||
|
||||
return c.JSON(struct {
|
||||
Object string `json:"object"`
|
||||
Data []OpenAIModel `json:"data"`
|
||||
}{
|
||||
Object: "list",
|
||||
Data: dataModels,
|
||||
})
|
||||
}
|
||||
}
|
188
api/prediction.go
Normal file
188
api/prediction.go
Normal file
|
@ -0,0 +1,188 @@
|
|||
package api
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"sync"
|
||||
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
gpt2 "github.com/go-skynet/go-gpt2.cpp"
|
||||
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
|
||||
llama "github.com/go-skynet/go-llama.cpp"
|
||||
)
|
||||
|
||||
// mutex still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
var mutexMap sync.Mutex
|
||||
var mutexes map[string]*sync.Mutex = make(map[string]*sync.Mutex)
|
||||
|
||||
func ModelInference(s string, loader *model.ModelLoader, c Config) (func() (string, error), error) {
|
||||
var model *llama.LLama
|
||||
var gptModel *gptj.GPTJ
|
||||
var gpt2Model *gpt2.GPT2
|
||||
var stableLMModel *gpt2.StableLM
|
||||
|
||||
modelFile := c.Model
|
||||
|
||||
// Try to load the model
|
||||
var llamaerr, gpt2err, gptjerr, stableerr error
|
||||
llamaOpts := []llama.ModelOption{}
|
||||
if c.ContextSize != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetContext(c.ContextSize))
|
||||
}
|
||||
if c.F16 {
|
||||
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
|
||||
}
|
||||
|
||||
// TODO: this is ugly, better identifying the model somehow! however, it is a good stab for a first implementation..
|
||||
model, llamaerr = loader.LoadLLaMAModel(modelFile, llamaOpts...)
|
||||
if llamaerr != nil {
|
||||
gptModel, gptjerr = loader.LoadGPTJModel(modelFile)
|
||||
if gptjerr != nil {
|
||||
gpt2Model, gpt2err = loader.LoadGPT2Model(modelFile)
|
||||
if gpt2err != nil {
|
||||
stableLMModel, stableerr = loader.LoadStableLMModel(modelFile)
|
||||
if stableerr != nil {
|
||||
return nil, fmt.Errorf("llama: %s gpt: %s gpt2: %s stableLM: %s", llamaerr.Error(), gptjerr.Error(), gpt2err.Error(), stableerr.Error()) // llama failed first, so we want to catch both errors
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
var fn func() (string, error)
|
||||
|
||||
switch {
|
||||
case stableLMModel != nil:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []gpt2.PredictOption{
|
||||
gpt2.SetTemperature(c.Temperature),
|
||||
gpt2.SetTopP(c.TopP),
|
||||
gpt2.SetTopK(c.TopK),
|
||||
gpt2.SetTokens(c.Maxtokens),
|
||||
gpt2.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return stableLMModel.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case gpt2Model != nil:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []gpt2.PredictOption{
|
||||
gpt2.SetTemperature(c.Temperature),
|
||||
gpt2.SetTopP(c.TopP),
|
||||
gpt2.SetTopK(c.TopK),
|
||||
gpt2.SetTokens(c.Maxtokens),
|
||||
gpt2.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return gpt2Model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case gptModel != nil:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []gptj.PredictOption{
|
||||
gptj.SetTemperature(c.Temperature),
|
||||
gptj.SetTopP(c.TopP),
|
||||
gptj.SetTopK(c.TopK),
|
||||
gptj.SetTokens(c.Maxtokens),
|
||||
gptj.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, gptj.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, gptj.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return gptModel.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case model != nil:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []llama.PredictOption{
|
||||
llama.SetTemperature(c.Temperature),
|
||||
llama.SetTopP(c.TopP),
|
||||
llama.SetTopK(c.TopK),
|
||||
llama.SetTokens(c.Maxtokens),
|
||||
llama.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Debug {
|
||||
predictOptions = append(predictOptions, llama.Debug)
|
||||
}
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetStopWords(c.StopWords...))
|
||||
|
||||
if c.RepeatPenalty != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetPenalty(c.RepeatPenalty))
|
||||
}
|
||||
|
||||
if c.Keep != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetNKeep(c.Keep))
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.F16 {
|
||||
predictOptions = append(predictOptions, llama.EnableF16KV)
|
||||
}
|
||||
|
||||
if c.IgnoreEOS {
|
||||
predictOptions = append(predictOptions, llama.IgnoreEOS)
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
return func() (string, error) {
|
||||
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
mutexMap.Lock()
|
||||
l, ok := mutexes[modelFile]
|
||||
if !ok {
|
||||
m := &sync.Mutex{}
|
||||
mutexes[modelFile] = m
|
||||
l = m
|
||||
}
|
||||
mutexMap.Unlock()
|
||||
l.Lock()
|
||||
defer l.Unlock()
|
||||
|
||||
return fn()
|
||||
}, nil
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue