feat: add falcon ggllm via grpc client

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2023-07-15 01:19:43 +02:00
parent a84dee1be1
commit b816009db0
20 changed files with 2239 additions and 271 deletions

View file

@ -1,6 +1,7 @@
package api
import (
"context"
"fmt"
"os"
"path/filepath"
@ -9,6 +10,8 @@ import (
"sync"
"github.com/donomii/go-rwkv.cpp"
"github.com/go-skynet/LocalAI/pkg/grpc"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/go-skynet/LocalAI/pkg/langchain"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/stablediffusion"
@ -16,6 +19,7 @@ import (
bert "github.com/go-skynet/go-bert.cpp"
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
llama "github.com/go-skynet/go-llama.cpp"
gpt4all "github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
)
@ -23,6 +27,160 @@ import (
var mutexMap sync.Mutex
var mutexes map[string]*sync.Mutex = make(map[string]*sync.Mutex)
func gRPCModelOpts(c Config) *pb.ModelOptions {
b := 512
if c.Batch != 0 {
b = c.Batch
}
return &pb.ModelOptions{
ContextSize: int32(c.ContextSize),
Seed: int32(c.Seed),
NBatch: int32(b),
NGPULayers: int32(c.NGPULayers),
MMap: c.MMap,
MainGPU: c.MainGPU,
TensorSplit: c.TensorSplit,
}
}
// func defaultGGLLMOpts(c Config) []ggllm.ModelOption {
// ggllmOpts := []ggllm.ModelOption{}
// if c.ContextSize != 0 {
// ggllmOpts = append(ggllmOpts, ggllm.SetContext(c.ContextSize))
// }
// // F16 doesn't seem to produce good output at all!
// //if c.F16 {
// // llamaOpts = append(llamaOpts, llama.EnableF16Memory)
// //}
// if c.NGPULayers != 0 {
// ggllmOpts = append(ggllmOpts, ggllm.SetGPULayers(c.NGPULayers))
// }
// ggllmOpts = append(ggllmOpts, ggllm.SetMMap(c.MMap))
// ggllmOpts = append(ggllmOpts, ggllm.SetMainGPU(c.MainGPU))
// ggllmOpts = append(ggllmOpts, ggllm.SetTensorSplit(c.TensorSplit))
// if c.Batch != 0 {
// ggllmOpts = append(ggllmOpts, ggllm.SetNBatch(c.Batch))
// } else {
// ggllmOpts = append(ggllmOpts, ggllm.SetNBatch(512))
// }
// return ggllmOpts
// }
func gRPCPredictOpts(c Config, modelPath string) *pb.PredictOptions {
promptCachePath := ""
if c.PromptCachePath != "" {
p := filepath.Join(modelPath, c.PromptCachePath)
os.MkdirAll(filepath.Dir(p), 0755)
promptCachePath = p
}
return &pb.PredictOptions{
Temperature: float32(c.Temperature),
TopP: float32(c.TopP),
TopK: int32(c.TopK),
Tokens: int32(c.Maxtokens),
Threads: int32(c.Threads),
PromptCacheAll: c.PromptCacheAll,
PromptCacheRO: c.PromptCacheRO,
PromptCachePath: promptCachePath,
Mirostat: int32(c.Mirostat),
MirostatETA: float32(c.MirostatETA),
MirostatTAU: float32(c.MirostatTAU),
Debug: c.Debug,
StopPrompts: c.StopWords,
Repeat: int32(c.RepeatPenalty),
NKeep: int32(c.Keep),
Batch: int32(c.Batch),
IgnoreEOS: c.IgnoreEOS,
Seed: int32(c.Seed),
FrequencyPenalty: float32(c.FrequencyPenalty),
MLock: c.MMlock,
MMap: c.MMap,
MainGPU: c.MainGPU,
TensorSplit: c.TensorSplit,
TailFreeSamplingZ: float32(c.TFZ),
TypicalP: float32(c.TypicalP),
}
}
// func buildGGLLMPredictOptions(c Config, modelPath string) []ggllm.PredictOption {
// // Generate the prediction using the language model
// predictOptions := []ggllm.PredictOption{
// ggllm.SetTemperature(c.Temperature),
// ggllm.SetTopP(c.TopP),
// ggllm.SetTopK(c.TopK),
// ggllm.SetTokens(c.Maxtokens),
// ggllm.SetThreads(c.Threads),
// }
// if c.PromptCacheAll {
// predictOptions = append(predictOptions, ggllm.EnablePromptCacheAll)
// }
// if c.PromptCacheRO {
// predictOptions = append(predictOptions, ggllm.EnablePromptCacheRO)
// }
// if c.PromptCachePath != "" {
// // Create parent directory
// p := filepath.Join(modelPath, c.PromptCachePath)
// os.MkdirAll(filepath.Dir(p), 0755)
// predictOptions = append(predictOptions, ggllm.SetPathPromptCache(p))
// }
// if c.Mirostat != 0 {
// predictOptions = append(predictOptions, ggllm.SetMirostat(c.Mirostat))
// }
// if c.MirostatETA != 0 {
// predictOptions = append(predictOptions, ggllm.SetMirostatETA(c.MirostatETA))
// }
// if c.MirostatTAU != 0 {
// predictOptions = append(predictOptions, ggllm.SetMirostatTAU(c.MirostatTAU))
// }
// if c.Debug {
// predictOptions = append(predictOptions, ggllm.Debug)
// }
// predictOptions = append(predictOptions, ggllm.SetStopWords(c.StopWords...))
// if c.RepeatPenalty != 0 {
// predictOptions = append(predictOptions, ggllm.SetPenalty(c.RepeatPenalty))
// }
// if c.Keep != 0 {
// predictOptions = append(predictOptions, ggllm.SetNKeep(c.Keep))
// }
// if c.Batch != 0 {
// predictOptions = append(predictOptions, ggllm.SetBatch(c.Batch))
// }
// if c.IgnoreEOS {
// predictOptions = append(predictOptions, ggllm.IgnoreEOS)
// }
// if c.Seed != 0 {
// predictOptions = append(predictOptions, ggllm.SetSeed(c.Seed))
// }
// //predictOptions = append(predictOptions, llama.SetLogitBias(c.Seed))
// predictOptions = append(predictOptions, ggllm.SetFrequencyPenalty(c.FrequencyPenalty))
// predictOptions = append(predictOptions, ggllm.SetMlock(c.MMlock))
// predictOptions = append(predictOptions, ggllm.SetMemoryMap(c.MMap))
// predictOptions = append(predictOptions, ggllm.SetPredictionMainGPU(c.MainGPU))
// predictOptions = append(predictOptions, ggllm.SetPredictionTensorSplit(c.TensorSplit))
// predictOptions = append(predictOptions, ggllm.SetTailFreeSamplingZ(c.TFZ))
// predictOptions = append(predictOptions, ggllm.SetTypicalP(c.TypicalP))
// return predictOptions
// }
func defaultLLamaOpts(c Config) []llama.ModelOption {
llamaOpts := []llama.ModelOption{}
if c.ContextSize != 0 {
@ -59,118 +217,6 @@ func defaultLLamaOpts(c Config) []llama.ModelOption {
return llamaOpts
}
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, dst string, loader *model.ModelLoader, c Config, o *Option) (func() error, error) {
if c.Backend != model.StableDiffusionBackend {
return nil, fmt.Errorf("endpoint only working with stablediffusion models")
}
inferenceModel, err := loader.BackendLoader(c.Backend, c.ImageGenerationAssets, []llama.ModelOption{}, uint32(c.Threads), o.assetsDestination)
if err != nil {
return nil, err
}
var fn func() error
switch model := inferenceModel.(type) {
case *stablediffusion.StableDiffusion:
fn = func() error {
return model.GenerateImage(height, width, mode, step, seed, positive_prompt, negative_prompt, dst)
}
default:
fn = func() error {
return fmt.Errorf("creation of images not supported by the backend")
}
}
return func() error {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[c.Backend]
if !ok {
m := &sync.Mutex{}
mutexes[c.Backend] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
return fn()
}, nil
}
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c Config, o *Option) (func() ([]float32, error), error) {
if !c.Embeddings {
return nil, fmt.Errorf("endpoint disabled for this model by API configuration")
}
modelFile := c.Model
llamaOpts := defaultLLamaOpts(c)
var inferenceModel interface{}
var err error
if c.Backend == "" {
inferenceModel, err = loader.GreedyLoader(modelFile, llamaOpts, uint32(c.Threads), o.assetsDestination)
} else {
inferenceModel, err = loader.BackendLoader(c.Backend, modelFile, llamaOpts, uint32(c.Threads), o.assetsDestination)
}
if err != nil {
return nil, err
}
var fn func() ([]float32, error)
switch model := inferenceModel.(type) {
case *llama.LLama:
fn = func() ([]float32, error) {
predictOptions := buildLLamaPredictOptions(c, loader.ModelPath)
if len(tokens) > 0 {
return model.TokenEmbeddings(tokens, predictOptions...)
}
return model.Embeddings(s, predictOptions...)
}
// bert embeddings
case *bert.Bert:
fn = func() ([]float32, error) {
if len(tokens) > 0 {
return model.TokenEmbeddings(tokens, bert.SetThreads(c.Threads))
}
return model.Embeddings(s, bert.SetThreads(c.Threads))
}
default:
fn = func() ([]float32, error) {
return nil, fmt.Errorf("embeddings not supported by the backend")
}
}
return func() ([]float32, error) {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[modelFile]
if !ok {
m := &sync.Mutex{}
mutexes[modelFile] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
embeds, err := fn()
if err != nil {
return embeds, err
}
// Remove trailing 0s
for i := len(embeds) - 1; i >= 0; i-- {
if embeds[i] == 0.0 {
embeds = embeds[:i]
} else {
break
}
}
return embeds, nil
}, nil
}
func buildLLamaPredictOptions(c Config, modelPath string) []llama.PredictOption {
// Generate the prediction using the language model
predictOptions := []llama.PredictOption{
@ -253,18 +299,158 @@ func buildLLamaPredictOptions(c Config, modelPath string) []llama.PredictOption
return predictOptions
}
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, dst string, loader *model.ModelLoader, c Config, o *Option) (func() error, error) {
if c.Backend != model.StableDiffusionBackend {
return nil, fmt.Errorf("endpoint only working with stablediffusion models")
}
inferenceModel, err := loader.BackendLoader(
model.WithBackendString(c.Backend),
model.WithAssetDir(o.assetsDestination),
model.WithThreads(uint32(c.Threads)),
model.WithModelFile(c.ImageGenerationAssets),
)
if err != nil {
return nil, err
}
var fn func() error
switch model := inferenceModel.(type) {
case *stablediffusion.StableDiffusion:
fn = func() error {
return model.GenerateImage(height, width, mode, step, seed, positive_prompt, negative_prompt, dst)
}
default:
fn = func() error {
return fmt.Errorf("creation of images not supported by the backend")
}
}
return func() error {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[c.Backend]
if !ok {
m := &sync.Mutex{}
mutexes[c.Backend] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
return fn()
}, nil
}
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c Config, o *Option) (func() ([]float32, error), error) {
if !c.Embeddings {
return nil, fmt.Errorf("endpoint disabled for this model by API configuration")
}
modelFile := c.Model
llamaOpts := defaultLLamaOpts(c)
grpcOpts := gRPCModelOpts(c)
var inferenceModel interface{}
var err error
opts := []model.Option{
model.WithLlamaOpts(llamaOpts...),
model.WithLoadGRPCOpts(grpcOpts),
model.WithThreads(uint32(c.Threads)),
model.WithAssetDir(o.assetsDestination),
model.WithModelFile(modelFile),
}
if c.Backend == "" {
inferenceModel, err = loader.GreedyLoader(opts...)
} else {
opts = append(opts, model.WithBackendString(c.Backend))
inferenceModel, err = loader.BackendLoader(opts...)
}
if err != nil {
return nil, err
}
var fn func() ([]float32, error)
switch model := inferenceModel.(type) {
case *llama.LLama:
fn = func() ([]float32, error) {
predictOptions := buildLLamaPredictOptions(c, loader.ModelPath)
if len(tokens) > 0 {
return model.TokenEmbeddings(tokens, predictOptions...)
}
return model.Embeddings(s, predictOptions...)
}
// bert embeddings
case *bert.Bert:
fn = func() ([]float32, error) {
if len(tokens) > 0 {
return model.TokenEmbeddings(tokens, bert.SetThreads(c.Threads))
}
return model.Embeddings(s, bert.SetThreads(c.Threads))
}
default:
fn = func() ([]float32, error) {
return nil, fmt.Errorf("embeddings not supported by the backend")
}
}
return func() ([]float32, error) {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[modelFile]
if !ok {
m := &sync.Mutex{}
mutexes[modelFile] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
embeds, err := fn()
if err != nil {
return embeds, err
}
// Remove trailing 0s
for i := len(embeds) - 1; i >= 0; i-- {
if embeds[i] == 0.0 {
embeds = embeds[:i]
} else {
break
}
}
return embeds, nil
}, nil
}
func ModelInference(s string, loader *model.ModelLoader, c Config, o *Option, tokenCallback func(string) bool) (func() (string, error), error) {
supportStreams := false
modelFile := c.Model
llamaOpts := defaultLLamaOpts(c)
grpcOpts := gRPCModelOpts(c)
var inferenceModel interface{}
var err error
opts := []model.Option{
model.WithLlamaOpts(llamaOpts...),
model.WithLoadGRPCOpts(grpcOpts),
model.WithThreads(uint32(c.Threads)),
model.WithAssetDir(o.assetsDestination),
model.WithModelFile(modelFile),
}
if c.Backend == "" {
inferenceModel, err = loader.GreedyLoader(modelFile, llamaOpts, uint32(c.Threads), o.assetsDestination)
inferenceModel, err = loader.GreedyLoader(opts...)
} else {
inferenceModel, err = loader.BackendLoader(c.Backend, modelFile, llamaOpts, uint32(c.Threads), o.assetsDestination)
opts = append(opts, model.WithBackendString(c.Backend))
inferenceModel, err = loader.BackendLoader(opts...)
}
if err != nil {
return nil, err
@ -552,6 +738,25 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, o *Option, to
model.SetTokenCallback(nil)
return str, er
}
case *grpc.Client:
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
supportStreams = true
fn = func() (string, error) {
opts := gRPCPredictOpts(c, loader.ModelPath)
opts.Prompt = s
if tokenCallback != nil {
ss := ""
err := model.PredictStream(context.TODO(), opts, func(s string) {
tokenCallback(s)
ss += s
})
return ss, err
} else {
reply, err := model.Predict(context.TODO(), opts)
return reply.Message, err
}
}
case *langchain.HuggingFace:
fn = func() (string, error) {