Enhance autogptq backend to support VL models (#1860)

* Enhance autogptq backend to support VL models

* update dependencies for autogptq

* remove redundant auto-gptq dependency

* Convert base64 to image_url for Qwen-VL model

* implemented model inference for qwen-vl

* remove user prompt from generated answer

* fixed write image error

---------

Co-authored-by: Binghua Wu <bingwu@estee.com>
This commit is contained in:
Sebastian.W 2024-03-27 01:48:14 +08:00 committed by GitHub
parent e58410fa99
commit b7ffe66219
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 75 additions and 18 deletions

View file

@ -5,12 +5,14 @@ import signal
import sys
import os
import time
import base64
import grpc
import backend_pb2
import backend_pb2_grpc
from auto_gptq import AutoGPTQForCausalLM
from transformers import AutoTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import TextGenerationPipeline
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
@ -28,9 +30,19 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if request.Device != "":
device = request.Device
tokenizer = AutoTokenizer.from_pretrained(request.Model, use_fast=request.UseFastTokenizer)
# support loading local model files
model_path = os.path.join(os.environ.get('MODELS_PATH', './'), request.Model)
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, trust_remote_code=request.TrustRemoteCode)
model = AutoGPTQForCausalLM.from_quantized(request.Model,
# support model `Qwen/Qwen-VL-Chat-Int4`
if "qwen-vl" in request.Model.lower():
self.model_name = "Qwen-VL-Chat"
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=request.TrustRemoteCode,
use_triton=request.UseTriton,
device_map="auto").eval()
else:
model = AutoGPTQForCausalLM.from_quantized(model_path,
model_basename=request.ModelBaseName,
use_safetensors=True,
trust_remote_code=request.TrustRemoteCode,
@ -55,6 +67,11 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if request.TopP != 0.0:
top_p = request.TopP
prompt_images = self.recompile_vl_prompt(request)
compiled_prompt = prompt_images[0]
print(f"Prompt: {compiled_prompt}", file=sys.stderr)
# Implement Predict RPC
pipeline = TextGenerationPipeline(
model=self.model,
@ -64,10 +81,17 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
top_p=top_p,
repetition_penalty=penalty,
)
t = pipeline(request.Prompt)[0]["generated_text"]
# Remove prompt from response if present
if request.Prompt in t:
t = t.replace(request.Prompt, "")
t = pipeline(compiled_prompt)[0]["generated_text"]
print(f"generated_text: {t}", file=sys.stderr)
if compiled_prompt in t:
t = t.replace(compiled_prompt, "")
# house keeping. Remove the image files from /tmp folder
for img_path in prompt_images[1]:
try:
os.remove(img_path)
except Exception as e:
print(f"Error removing image file: {img_path}, {e}", file=sys.stderr)
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
@ -78,6 +102,24 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
# Not implemented yet
return self.Predict(request, context)
def recompile_vl_prompt(self, request):
prompt = request.Prompt
image_paths = []
if "qwen-vl" in self.model_name.lower():
# request.Images is an array which contains base64 encoded images. Iterate the request.Images array, decode and save each image to /tmp folder with a random filename.
# Then, save the image file paths to an array "image_paths".
# read "request.Prompt", replace "[img-%d]" with the image file paths in the order they appear in "image_paths". Save the new prompt to "prompt".
for i, img in enumerate(request.Images):
timestamp = str(int(time.time() * 1000)) # Generate timestamp
img_path = f"/tmp/vl-{timestamp}.jpg" # Use timestamp in filename
with open(img_path, "wb") as f:
f.write(base64.b64decode(img))
image_paths.append(img_path)
prompt = prompt.replace(f"[img-{i}]", "<img>" + img_path + "</img>,")
else:
prompt = request.Prompt
return (prompt, image_paths)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))