mirror of
https://github.com/mudler/LocalAI.git
synced 2025-05-20 18:45:00 +00:00
example(add): document query example
This commit is contained in:
parent
d094381e5d
commit
ad301e6ed7
10 changed files with 162 additions and 0 deletions
32
examples/query_data/query.py
Normal file
32
examples/query_data/query.py
Normal file
|
@ -0,0 +1,32 @@
|
|||
import os
|
||||
|
||||
# Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended)
|
||||
# os.environ['OPENAI_API_KEY']= ""
|
||||
|
||||
from llama_index import LLMPredictor, PromptHelper, ServiceContext
|
||||
from langchain.llms.openai import OpenAI
|
||||
from llama_index import StorageContext, load_index_from_storage
|
||||
|
||||
|
||||
# This example uses text-davinci-003 by default; feel free to change if desired
|
||||
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo",openai_api_base="http://localhost:8080/v1"))
|
||||
|
||||
# Configure prompt parameters and initialise helper
|
||||
max_input_size = 1024
|
||||
num_output = 256
|
||||
max_chunk_overlap = 20
|
||||
|
||||
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
|
||||
|
||||
# Load documents from the 'data' directory
|
||||
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
||||
|
||||
# rebuild storage context
|
||||
storage_context = StorageContext.from_defaults(persist_dir='./storage')
|
||||
|
||||
# load index
|
||||
index = load_index_from_storage(storage_context, service_context=service_context, )
|
||||
|
||||
query_engine = index.as_query_engine()
|
||||
response = query_engine.query("XXXXXX your question here XXXXX")
|
||||
print(response)
|
Loading…
Add table
Add a link
Reference in a new issue