mirror of
https://github.com/mudler/LocalAI.git
synced 2025-05-20 10:35:01 +00:00
refactor: move backends into the backends directory (#1279)
* refactor: move backends into the backends directory Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * refactor: move main close to implementation for every backend Signed-off-by: Ettore Di Giacinto <mudler@localai.io> --------- Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
parent
55461188a4
commit
ad0e30bca5
102 changed files with 156 additions and 190 deletions
34
backend/go/llm/bert/bert.go
Normal file
34
backend/go/llm/bert/bert.go
Normal file
|
@ -0,0 +1,34 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
bert "github.com/go-skynet/go-bert.cpp"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
)
|
||||
|
||||
type Embeddings struct {
|
||||
base.SingleThread
|
||||
bert *bert.Bert
|
||||
}
|
||||
|
||||
func (llm *Embeddings) Load(opts *pb.ModelOptions) error {
|
||||
model, err := bert.New(opts.ModelFile)
|
||||
llm.bert = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *Embeddings) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
|
||||
|
||||
if len(opts.EmbeddingTokens) > 0 {
|
||||
tokens := []int{}
|
||||
for _, t := range opts.EmbeddingTokens {
|
||||
tokens = append(tokens, int(t))
|
||||
}
|
||||
return llm.bert.TokenEmbeddings(tokens, bert.SetThreads(int(opts.Threads)))
|
||||
}
|
||||
|
||||
return llm.bert.Embeddings(opts.Embeddings, bert.SetThreads(int(opts.Threads)))
|
||||
}
|
21
backend/go/llm/bert/main.go
Normal file
21
backend/go/llm/bert/main.go
Normal file
|
@ -0,0 +1,21 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &Embeddings{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
23
backend/go/llm/dolly/main.go
Normal file
23
backend/go/llm/dolly/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.Dolly{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
23
backend/go/llm/falcon-ggml/main.go
Normal file
23
backend/go/llm/falcon-ggml/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.Falcon{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
23
backend/go/llm/gpt2/main.go
Normal file
23
backend/go/llm/gpt2/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.GPT2{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
62
backend/go/llm/gpt4all/gpt4all.go
Normal file
62
backend/go/llm/gpt4all/gpt4all.go
Normal file
|
@ -0,0 +1,62 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
gpt4all "github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
|
||||
)
|
||||
|
||||
type LLM struct {
|
||||
base.SingleThread
|
||||
|
||||
gpt4all *gpt4all.Model
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
model, err := gpt4all.New(opts.ModelFile,
|
||||
gpt4all.SetThreads(int(opts.Threads)),
|
||||
gpt4all.SetLibrarySearchPath(opts.LibrarySearchPath))
|
||||
llm.gpt4all = model
|
||||
return err
|
||||
}
|
||||
|
||||
func buildPredictOptions(opts *pb.PredictOptions) []gpt4all.PredictOption {
|
||||
predictOptions := []gpt4all.PredictOption{
|
||||
gpt4all.SetTemperature(float64(opts.Temperature)),
|
||||
gpt4all.SetTopP(float64(opts.TopP)),
|
||||
gpt4all.SetTopK(int(opts.TopK)),
|
||||
gpt4all.SetTokens(int(opts.Tokens)),
|
||||
}
|
||||
|
||||
if opts.Batch != 0 {
|
||||
predictOptions = append(predictOptions, gpt4all.SetBatch(int(opts.Batch)))
|
||||
}
|
||||
return predictOptions
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.gpt4all.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
go func() {
|
||||
llm.gpt4all.SetTokenCallback(func(token string) bool {
|
||||
results <- token
|
||||
return true
|
||||
})
|
||||
_, err := llm.gpt4all.Predict(opts.Prompt, predictOptions...)
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
llm.gpt4all.SetTokenCallback(nil)
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
21
backend/go/llm/gpt4all/main.go
Normal file
21
backend/go/llm/gpt4all/main.go
Normal file
|
@ -0,0 +1,21 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
23
backend/go/llm/gptj/main.go
Normal file
23
backend/go/llm/gptj/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.GPTJ{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
23
backend/go/llm/gptneox/main.go
Normal file
23
backend/go/llm/gptneox/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.GPTNeoX{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
58
backend/go/llm/langchain/langchain.go
Normal file
58
backend/go/llm/langchain/langchain.go
Normal file
|
@ -0,0 +1,58 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/langchain"
|
||||
)
|
||||
|
||||
type LLM struct {
|
||||
base.Base
|
||||
|
||||
langchain *langchain.HuggingFace
|
||||
model string
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
llm.langchain, _ = langchain.NewHuggingFace(opts.Model)
|
||||
llm.model = opts.Model
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
o := []langchain.PredictOption{
|
||||
langchain.SetModel(llm.model),
|
||||
langchain.SetMaxTokens(int(opts.Tokens)),
|
||||
langchain.SetTemperature(float64(opts.Temperature)),
|
||||
langchain.SetStopWords(opts.StopPrompts),
|
||||
}
|
||||
pred, err := llm.langchain.PredictHuggingFace(opts.Prompt, o...)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return pred.Completion, nil
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
o := []langchain.PredictOption{
|
||||
langchain.SetModel(llm.model),
|
||||
langchain.SetMaxTokens(int(opts.Tokens)),
|
||||
langchain.SetTemperature(float64(opts.Temperature)),
|
||||
langchain.SetStopWords(opts.StopPrompts),
|
||||
}
|
||||
go func() {
|
||||
res, err := llm.langchain.PredictHuggingFace(opts.Prompt, o...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res.Completion
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
21
backend/go/llm/langchain/main.go
Normal file
21
backend/go/llm/langchain/main.go
Normal file
|
@ -0,0 +1,21 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
204
backend/go/llm/llama-stable/llama.go
Normal file
204
backend/go/llm/llama-stable/llama.go
Normal file
|
@ -0,0 +1,204 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/go-llama.cpp"
|
||||
)
|
||||
|
||||
type LLM struct {
|
||||
base.SingleThread
|
||||
|
||||
llama *llama.LLama
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
ropeFreqBase := float32(10000)
|
||||
ropeFreqScale := float32(1)
|
||||
|
||||
if opts.RopeFreqBase != 0 {
|
||||
ropeFreqBase = opts.RopeFreqBase
|
||||
}
|
||||
if opts.RopeFreqScale != 0 {
|
||||
ropeFreqScale = opts.RopeFreqScale
|
||||
}
|
||||
|
||||
llamaOpts := []llama.ModelOption{
|
||||
llama.WithRopeFreqBase(ropeFreqBase),
|
||||
llama.WithRopeFreqScale(ropeFreqScale),
|
||||
}
|
||||
|
||||
if opts.NGQA != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.WithGQA(int(opts.NGQA)))
|
||||
}
|
||||
|
||||
if opts.RMSNormEps != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.WithRMSNormEPS(opts.RMSNormEps))
|
||||
}
|
||||
|
||||
if opts.ContextSize != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetContext(int(opts.ContextSize)))
|
||||
}
|
||||
if opts.F16Memory {
|
||||
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
|
||||
}
|
||||
if opts.Embeddings {
|
||||
llamaOpts = append(llamaOpts, llama.EnableEmbeddings)
|
||||
}
|
||||
if opts.NGPULayers != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetGPULayers(int(opts.NGPULayers)))
|
||||
}
|
||||
|
||||
llamaOpts = append(llamaOpts, llama.SetMMap(opts.MMap))
|
||||
llamaOpts = append(llamaOpts, llama.SetMainGPU(opts.MainGPU))
|
||||
llamaOpts = append(llamaOpts, llama.SetTensorSplit(opts.TensorSplit))
|
||||
if opts.NBatch != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetNBatch(int(opts.NBatch)))
|
||||
} else {
|
||||
llamaOpts = append(llamaOpts, llama.SetNBatch(512))
|
||||
}
|
||||
|
||||
if opts.NUMA {
|
||||
llamaOpts = append(llamaOpts, llama.EnableNUMA)
|
||||
}
|
||||
|
||||
if opts.LowVRAM {
|
||||
llamaOpts = append(llamaOpts, llama.EnabelLowVRAM)
|
||||
}
|
||||
|
||||
model, err := llama.New(opts.ModelFile, llamaOpts...)
|
||||
llm.llama = model
|
||||
|
||||
return err
|
||||
}
|
||||
|
||||
func buildPredictOptions(opts *pb.PredictOptions) []llama.PredictOption {
|
||||
ropeFreqBase := float32(10000)
|
||||
ropeFreqScale := float32(1)
|
||||
|
||||
if opts.RopeFreqBase != 0 {
|
||||
ropeFreqBase = opts.RopeFreqBase
|
||||
}
|
||||
if opts.RopeFreqScale != 0 {
|
||||
ropeFreqScale = opts.RopeFreqScale
|
||||
}
|
||||
predictOptions := []llama.PredictOption{
|
||||
llama.SetTemperature(opts.Temperature),
|
||||
llama.SetTopP(opts.TopP),
|
||||
llama.SetTopK(int(opts.TopK)),
|
||||
llama.SetTokens(int(opts.Tokens)),
|
||||
llama.SetThreads(int(opts.Threads)),
|
||||
llama.WithGrammar(opts.Grammar),
|
||||
llama.SetRopeFreqBase(ropeFreqBase),
|
||||
llama.SetRopeFreqScale(ropeFreqScale),
|
||||
llama.SetNegativePromptScale(opts.NegativePromptScale),
|
||||
llama.SetNegativePrompt(opts.NegativePrompt),
|
||||
}
|
||||
|
||||
if opts.PromptCacheAll {
|
||||
predictOptions = append(predictOptions, llama.EnablePromptCacheAll)
|
||||
}
|
||||
|
||||
if opts.PromptCacheRO {
|
||||
predictOptions = append(predictOptions, llama.EnablePromptCacheRO)
|
||||
}
|
||||
|
||||
// Expected absolute path
|
||||
if opts.PromptCachePath != "" {
|
||||
predictOptions = append(predictOptions, llama.SetPathPromptCache(opts.PromptCachePath))
|
||||
}
|
||||
|
||||
if opts.Mirostat != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostat(int(opts.Mirostat)))
|
||||
}
|
||||
|
||||
if opts.MirostatETA != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostatETA(opts.MirostatETA))
|
||||
}
|
||||
|
||||
if opts.MirostatTAU != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostatTAU(opts.MirostatTAU))
|
||||
}
|
||||
|
||||
if opts.Debug {
|
||||
predictOptions = append(predictOptions, llama.Debug)
|
||||
}
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetStopWords(opts.StopPrompts...))
|
||||
|
||||
if opts.PresencePenalty != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetPenalty(opts.PresencePenalty))
|
||||
}
|
||||
|
||||
if opts.NKeep != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetNKeep(int(opts.NKeep)))
|
||||
}
|
||||
|
||||
if opts.Batch != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetBatch(int(opts.Batch)))
|
||||
}
|
||||
|
||||
if opts.F16KV {
|
||||
predictOptions = append(predictOptions, llama.EnableF16KV)
|
||||
}
|
||||
|
||||
if opts.IgnoreEOS {
|
||||
predictOptions = append(predictOptions, llama.IgnoreEOS)
|
||||
}
|
||||
|
||||
if opts.Seed != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetSeed(int(opts.Seed)))
|
||||
}
|
||||
|
||||
//predictOptions = append(predictOptions, llama.SetLogitBias(c.Seed))
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetFrequencyPenalty(opts.FrequencyPenalty))
|
||||
predictOptions = append(predictOptions, llama.SetMlock(opts.MLock))
|
||||
predictOptions = append(predictOptions, llama.SetMemoryMap(opts.MMap))
|
||||
predictOptions = append(predictOptions, llama.SetPredictionMainGPU(opts.MainGPU))
|
||||
predictOptions = append(predictOptions, llama.SetPredictionTensorSplit(opts.TensorSplit))
|
||||
predictOptions = append(predictOptions, llama.SetTailFreeSamplingZ(opts.TailFreeSamplingZ))
|
||||
predictOptions = append(predictOptions, llama.SetTypicalP(opts.TypicalP))
|
||||
return predictOptions
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.llama.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetTokenCallback(func(token string) bool {
|
||||
results <- token
|
||||
return true
|
||||
}))
|
||||
|
||||
go func() {
|
||||
_, err := llm.llama.Predict(opts.Prompt, predictOptions...)
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
if len(opts.EmbeddingTokens) > 0 {
|
||||
tokens := []int{}
|
||||
for _, t := range opts.EmbeddingTokens {
|
||||
tokens = append(tokens, int(t))
|
||||
}
|
||||
return llm.llama.TokenEmbeddings(tokens, predictOptions...)
|
||||
}
|
||||
|
||||
return llm.llama.Embeddings(opts.Embeddings, predictOptions...)
|
||||
}
|
19
backend/go/llm/llama-stable/main.go
Normal file
19
backend/go/llm/llama-stable/main.go
Normal file
|
@ -0,0 +1,19 @@
|
|||
package main
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
257
backend/go/llm/llama/llama.go
Normal file
257
backend/go/llm/llama/llama.go
Normal file
|
@ -0,0 +1,257 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
"path/filepath"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/go-llama.cpp"
|
||||
)
|
||||
|
||||
type LLM struct {
|
||||
base.SingleThread
|
||||
|
||||
llama *llama.LLama
|
||||
draftModel *llama.LLama
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
ropeFreqBase := float32(10000)
|
||||
ropeFreqScale := float32(1)
|
||||
|
||||
if opts.RopeFreqBase != 0 {
|
||||
ropeFreqBase = opts.RopeFreqBase
|
||||
}
|
||||
if opts.RopeFreqScale != 0 {
|
||||
ropeFreqScale = opts.RopeFreqScale
|
||||
}
|
||||
|
||||
llamaOpts := []llama.ModelOption{
|
||||
llama.WithRopeFreqBase(ropeFreqBase),
|
||||
llama.WithRopeFreqScale(ropeFreqScale),
|
||||
}
|
||||
|
||||
if opts.NoMulMatQ {
|
||||
llamaOpts = append(llamaOpts, llama.SetMulMatQ(false))
|
||||
}
|
||||
|
||||
// Get base path of opts.ModelFile and use the same for lora (assume the same path)
|
||||
basePath := filepath.Dir(opts.ModelFile)
|
||||
|
||||
if opts.LoraAdapter != "" {
|
||||
llamaOpts = append(llamaOpts, llama.SetLoraAdapter(filepath.Join(basePath, opts.LoraAdapter)))
|
||||
}
|
||||
|
||||
if opts.LoraBase != "" {
|
||||
llamaOpts = append(llamaOpts, llama.SetLoraBase(filepath.Join(basePath, opts.LoraBase)))
|
||||
}
|
||||
|
||||
if opts.ContextSize != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetContext(int(opts.ContextSize)))
|
||||
}
|
||||
if opts.F16Memory {
|
||||
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
|
||||
}
|
||||
if opts.Embeddings {
|
||||
llamaOpts = append(llamaOpts, llama.EnableEmbeddings)
|
||||
}
|
||||
if opts.NGPULayers != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetGPULayers(int(opts.NGPULayers)))
|
||||
}
|
||||
|
||||
llamaOpts = append(llamaOpts, llama.SetMMap(opts.MMap))
|
||||
llamaOpts = append(llamaOpts, llama.SetMainGPU(opts.MainGPU))
|
||||
llamaOpts = append(llamaOpts, llama.SetTensorSplit(opts.TensorSplit))
|
||||
if opts.NBatch != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetNBatch(int(opts.NBatch)))
|
||||
} else {
|
||||
llamaOpts = append(llamaOpts, llama.SetNBatch(512))
|
||||
}
|
||||
|
||||
if opts.NUMA {
|
||||
llamaOpts = append(llamaOpts, llama.EnableNUMA)
|
||||
}
|
||||
|
||||
if opts.LowVRAM {
|
||||
llamaOpts = append(llamaOpts, llama.EnabelLowVRAM)
|
||||
}
|
||||
|
||||
if opts.DraftModel != "" {
|
||||
// https://github.com/ggerganov/llama.cpp/blob/71ca2fad7d6c0ef95ef9944fb3a1a843e481f314/examples/speculative/speculative.cpp#L40
|
||||
llamaOpts = append(llamaOpts, llama.SetPerplexity(true))
|
||||
}
|
||||
|
||||
model, err := llama.New(opts.ModelFile, llamaOpts...)
|
||||
|
||||
if opts.DraftModel != "" {
|
||||
// opts.DraftModel is relative to opts.ModelFile, so we need to get the basepath of opts.ModelFile
|
||||
if !filepath.IsAbs(opts.DraftModel) {
|
||||
dir := filepath.Dir(opts.ModelFile)
|
||||
opts.DraftModel = filepath.Join(dir, opts.DraftModel)
|
||||
}
|
||||
|
||||
draftModel, err := llama.New(opts.DraftModel, llamaOpts...)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
llm.draftModel = draftModel
|
||||
}
|
||||
|
||||
llm.llama = model
|
||||
|
||||
return err
|
||||
}
|
||||
|
||||
func buildPredictOptions(opts *pb.PredictOptions) []llama.PredictOption {
|
||||
ropeFreqBase := float32(10000)
|
||||
ropeFreqScale := float32(1)
|
||||
|
||||
if opts.RopeFreqBase != 0 {
|
||||
ropeFreqBase = opts.RopeFreqBase
|
||||
}
|
||||
if opts.RopeFreqScale != 0 {
|
||||
ropeFreqScale = opts.RopeFreqScale
|
||||
}
|
||||
predictOptions := []llama.PredictOption{
|
||||
llama.SetTemperature(opts.Temperature),
|
||||
llama.SetTopP(opts.TopP),
|
||||
llama.SetTopK(int(opts.TopK)),
|
||||
llama.SetTokens(int(opts.Tokens)),
|
||||
llama.SetThreads(int(opts.Threads)),
|
||||
llama.WithGrammar(opts.Grammar),
|
||||
llama.SetRopeFreqBase(ropeFreqBase),
|
||||
llama.SetRopeFreqScale(ropeFreqScale),
|
||||
llama.SetNegativePromptScale(opts.NegativePromptScale),
|
||||
llama.SetNegativePrompt(opts.NegativePrompt),
|
||||
}
|
||||
|
||||
if opts.PromptCacheAll {
|
||||
predictOptions = append(predictOptions, llama.EnablePromptCacheAll)
|
||||
}
|
||||
|
||||
if opts.PromptCacheRO {
|
||||
predictOptions = append(predictOptions, llama.EnablePromptCacheRO)
|
||||
}
|
||||
|
||||
// Expected absolute path
|
||||
if opts.PromptCachePath != "" {
|
||||
predictOptions = append(predictOptions, llama.SetPathPromptCache(opts.PromptCachePath))
|
||||
}
|
||||
|
||||
if opts.Mirostat != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostat(int(opts.Mirostat)))
|
||||
}
|
||||
|
||||
if opts.MirostatETA != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostatETA(opts.MirostatETA))
|
||||
}
|
||||
|
||||
if opts.MirostatTAU != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostatTAU(opts.MirostatTAU))
|
||||
}
|
||||
|
||||
if opts.Debug {
|
||||
predictOptions = append(predictOptions, llama.Debug)
|
||||
}
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetStopWords(opts.StopPrompts...))
|
||||
|
||||
if opts.PresencePenalty != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetPenalty(opts.PresencePenalty))
|
||||
}
|
||||
|
||||
if opts.NKeep != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetNKeep(int(opts.NKeep)))
|
||||
}
|
||||
|
||||
if opts.Batch != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetBatch(int(opts.Batch)))
|
||||
}
|
||||
|
||||
if opts.F16KV {
|
||||
predictOptions = append(predictOptions, llama.EnableF16KV)
|
||||
}
|
||||
|
||||
if opts.IgnoreEOS {
|
||||
predictOptions = append(predictOptions, llama.IgnoreEOS)
|
||||
}
|
||||
|
||||
if opts.Seed != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetSeed(int(opts.Seed)))
|
||||
}
|
||||
|
||||
if opts.NDraft != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetNDraft(int(opts.NDraft)))
|
||||
}
|
||||
//predictOptions = append(predictOptions, llama.SetLogitBias(c.Seed))
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetFrequencyPenalty(opts.FrequencyPenalty))
|
||||
predictOptions = append(predictOptions, llama.SetMlock(opts.MLock))
|
||||
predictOptions = append(predictOptions, llama.SetMemoryMap(opts.MMap))
|
||||
predictOptions = append(predictOptions, llama.SetPredictionMainGPU(opts.MainGPU))
|
||||
predictOptions = append(predictOptions, llama.SetPredictionTensorSplit(opts.TensorSplit))
|
||||
predictOptions = append(predictOptions, llama.SetTailFreeSamplingZ(opts.TailFreeSamplingZ))
|
||||
predictOptions = append(predictOptions, llama.SetTypicalP(opts.TypicalP))
|
||||
return predictOptions
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
if llm.draftModel != nil {
|
||||
return llm.llama.SpeculativeSampling(llm.draftModel, opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
return llm.llama.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetTokenCallback(func(token string) bool {
|
||||
results <- token
|
||||
return true
|
||||
}))
|
||||
|
||||
go func() {
|
||||
var err error
|
||||
if llm.draftModel != nil {
|
||||
_, err = llm.llama.SpeculativeSampling(llm.draftModel, opts.Prompt, buildPredictOptions(opts)...)
|
||||
} else {
|
||||
_, err = llm.llama.Predict(opts.Prompt, predictOptions...)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
if len(opts.EmbeddingTokens) > 0 {
|
||||
tokens := []int{}
|
||||
for _, t := range opts.EmbeddingTokens {
|
||||
tokens = append(tokens, int(t))
|
||||
}
|
||||
return llm.llama.TokenEmbeddings(tokens, predictOptions...)
|
||||
}
|
||||
|
||||
return llm.llama.Embeddings(opts.Embeddings, predictOptions...)
|
||||
}
|
||||
|
||||
func (llm *LLM) TokenizeString(opts *pb.PredictOptions) (pb.TokenizationResponse, error) {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
l, tokens, err := llm.llama.TokenizeString(opts.Prompt, predictOptions...)
|
||||
if err != nil {
|
||||
return pb.TokenizationResponse{}, err
|
||||
}
|
||||
return pb.TokenizationResponse{
|
||||
Length: l,
|
||||
Tokens: tokens,
|
||||
}, nil
|
||||
}
|
23
backend/go/llm/llama/main.go
Normal file
23
backend/go/llm/llama/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// GRPC Falcon server
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
23
backend/go/llm/mpt/main.go
Normal file
23
backend/go/llm/mpt/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.MPT{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
23
backend/go/llm/replit/main.go
Normal file
23
backend/go/llm/replit/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.Replit{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
21
backend/go/llm/rwkv/main.go
Normal file
21
backend/go/llm/rwkv/main.go
Normal file
|
@ -0,0 +1,21 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
95
backend/go/llm/rwkv/rwkv.go
Normal file
95
backend/go/llm/rwkv/rwkv.go
Normal file
|
@ -0,0 +1,95 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
"path/filepath"
|
||||
|
||||
"github.com/donomii/go-rwkv.cpp"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
)
|
||||
|
||||
const tokenizerSuffix = ".tokenizer.json"
|
||||
|
||||
type LLM struct {
|
||||
base.SingleThread
|
||||
|
||||
rwkv *rwkv.RwkvState
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
tokenizerFile := opts.Tokenizer
|
||||
if tokenizerFile == "" {
|
||||
modelFile := filepath.Base(opts.ModelFile)
|
||||
tokenizerFile = modelFile + tokenizerSuffix
|
||||
}
|
||||
modelPath := filepath.Dir(opts.ModelFile)
|
||||
tokenizerPath := filepath.Join(modelPath, tokenizerFile)
|
||||
|
||||
model := rwkv.LoadFiles(opts.ModelFile, tokenizerPath, uint32(opts.GetThreads()))
|
||||
|
||||
if model == nil {
|
||||
return fmt.Errorf("could not load model")
|
||||
}
|
||||
llm.rwkv = model
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
stopWord := "\n"
|
||||
if len(opts.StopPrompts) > 0 {
|
||||
stopWord = opts.StopPrompts[0]
|
||||
}
|
||||
|
||||
if err := llm.rwkv.ProcessInput(opts.Prompt); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
response := llm.rwkv.GenerateResponse(int(opts.Tokens), stopWord, float32(opts.Temperature), float32(opts.TopP), nil)
|
||||
|
||||
return response, nil
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
|
||||
stopWord := "\n"
|
||||
if len(opts.StopPrompts) > 0 {
|
||||
stopWord = opts.StopPrompts[0]
|
||||
}
|
||||
|
||||
if err := llm.rwkv.ProcessInput(opts.Prompt); err != nil {
|
||||
fmt.Println("Error processing input: ", err)
|
||||
return
|
||||
}
|
||||
|
||||
llm.rwkv.GenerateResponse(int(opts.Tokens), stopWord, float32(opts.Temperature), float32(opts.TopP), func(s string) bool {
|
||||
results <- s
|
||||
return true
|
||||
})
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) TokenizeString(opts *pb.PredictOptions) (pb.TokenizationResponse, error) {
|
||||
tokens, err := llm.rwkv.Tokenizer.Encode(opts.Prompt)
|
||||
if err != nil {
|
||||
return pb.TokenizationResponse{}, err
|
||||
}
|
||||
|
||||
l := len(tokens)
|
||||
i32Tokens := make([]int32, l)
|
||||
|
||||
for i, t := range tokens {
|
||||
i32Tokens[i] = int32(t.ID)
|
||||
}
|
||||
|
||||
return pb.TokenizationResponse{
|
||||
Length: int32(l),
|
||||
Tokens: i32Tokens,
|
||||
}, nil
|
||||
}
|
23
backend/go/llm/starcoder/main.go
Normal file
23
backend/go/llm/starcoder/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.Starcoder{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
44
backend/go/llm/transformers/dolly.go
Normal file
44
backend/go/llm/transformers/dolly.go
Normal file
|
@ -0,0 +1,44 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type Dolly struct {
|
||||
base.SingleThread
|
||||
|
||||
dolly *transformers.Dolly
|
||||
}
|
||||
|
||||
func (llm *Dolly) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.NewDolly(opts.ModelFile)
|
||||
llm.dolly = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *Dolly) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.dolly.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *Dolly) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
|
||||
go func() {
|
||||
res, err := llm.dolly.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
43
backend/go/llm/transformers/falcon.go
Normal file
43
backend/go/llm/transformers/falcon.go
Normal file
|
@ -0,0 +1,43 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type Falcon struct {
|
||||
base.SingleThread
|
||||
|
||||
falcon *transformers.Falcon
|
||||
}
|
||||
|
||||
func (llm *Falcon) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.NewFalcon(opts.ModelFile)
|
||||
llm.falcon = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *Falcon) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.falcon.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *Falcon) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.falcon.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
42
backend/go/llm/transformers/gpt2.go
Normal file
42
backend/go/llm/transformers/gpt2.go
Normal file
|
@ -0,0 +1,42 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type GPT2 struct {
|
||||
base.SingleThread
|
||||
|
||||
gpt2 *transformers.GPT2
|
||||
}
|
||||
|
||||
func (llm *GPT2) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.New(opts.ModelFile)
|
||||
llm.gpt2 = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *GPT2) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.gpt2.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *GPT2) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.gpt2.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
return nil
|
||||
}
|
42
backend/go/llm/transformers/gptj.go
Normal file
42
backend/go/llm/transformers/gptj.go
Normal file
|
@ -0,0 +1,42 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type GPTJ struct {
|
||||
base.SingleThread
|
||||
|
||||
gptj *transformers.GPTJ
|
||||
}
|
||||
|
||||
func (llm *GPTJ) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.NewGPTJ(opts.ModelFile)
|
||||
llm.gptj = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *GPTJ) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.gptj.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *GPTJ) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.gptj.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
return nil
|
||||
}
|
42
backend/go/llm/transformers/gptneox.go
Normal file
42
backend/go/llm/transformers/gptneox.go
Normal file
|
@ -0,0 +1,42 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type GPTNeoX struct {
|
||||
base.SingleThread
|
||||
|
||||
gptneox *transformers.GPTNeoX
|
||||
}
|
||||
|
||||
func (llm *GPTNeoX) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.NewGPTNeoX(opts.ModelFile)
|
||||
llm.gptneox = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *GPTNeoX) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.gptneox.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *GPTNeoX) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.gptneox.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
return nil
|
||||
}
|
42
backend/go/llm/transformers/mpt.go
Normal file
42
backend/go/llm/transformers/mpt.go
Normal file
|
@ -0,0 +1,42 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type MPT struct {
|
||||
base.SingleThread
|
||||
|
||||
mpt *transformers.MPT
|
||||
}
|
||||
|
||||
func (llm *MPT) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.NewMPT(opts.ModelFile)
|
||||
llm.mpt = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *MPT) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.mpt.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *MPT) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.mpt.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
return nil
|
||||
}
|
26
backend/go/llm/transformers/predict.go
Normal file
26
backend/go/llm/transformers/predict.go
Normal file
|
@ -0,0 +1,26 @@
|
|||
package transformers
|
||||
|
||||
import (
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
func buildPredictOptions(opts *pb.PredictOptions) []transformers.PredictOption {
|
||||
predictOptions := []transformers.PredictOption{
|
||||
transformers.SetTemperature(float64(opts.Temperature)),
|
||||
transformers.SetTopP(float64(opts.TopP)),
|
||||
transformers.SetTopK(int(opts.TopK)),
|
||||
transformers.SetTokens(int(opts.Tokens)),
|
||||
transformers.SetThreads(int(opts.Threads)),
|
||||
}
|
||||
|
||||
if opts.Batch != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetBatch(int(opts.Batch)))
|
||||
}
|
||||
|
||||
if opts.Seed != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetSeed(int(opts.Seed)))
|
||||
}
|
||||
|
||||
return predictOptions
|
||||
}
|
42
backend/go/llm/transformers/replit.go
Normal file
42
backend/go/llm/transformers/replit.go
Normal file
|
@ -0,0 +1,42 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type Replit struct {
|
||||
base.SingleThread
|
||||
|
||||
replit *transformers.Replit
|
||||
}
|
||||
|
||||
func (llm *Replit) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.NewReplit(opts.ModelFile)
|
||||
llm.replit = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *Replit) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.replit.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *Replit) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.replit.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
return nil
|
||||
}
|
43
backend/go/llm/transformers/starcoder.go
Normal file
43
backend/go/llm/transformers/starcoder.go
Normal file
|
@ -0,0 +1,43 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type Starcoder struct {
|
||||
base.SingleThread
|
||||
|
||||
starcoder *transformers.Starcoder
|
||||
}
|
||||
|
||||
func (llm *Starcoder) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.NewStarcoder(opts.ModelFile)
|
||||
llm.starcoder = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *Starcoder) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.starcoder.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *Starcoder) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.starcoder.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue