mirror of
https://github.com/mudler/LocalAI.git
synced 2025-05-20 10:35:01 +00:00
refactor: move backends into the backends directory (#1279)
* refactor: move backends into the backends directory Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * refactor: move main close to implementation for every backend Signed-off-by: Ettore Di Giacinto <mudler@localai.io> --------- Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
parent
55461188a4
commit
ad0e30bca5
102 changed files with 156 additions and 190 deletions
208
backend/backend.proto
Normal file
208
backend/backend.proto
Normal file
|
@ -0,0 +1,208 @@
|
|||
syntax = "proto3";
|
||||
|
||||
option go_package = "github.com/go-skynet/LocalAI/pkg/grpc/proto";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "io.skynet.localai.backend";
|
||||
option java_outer_classname = "LocalAIBackend";
|
||||
|
||||
package backend;
|
||||
|
||||
service Backend {
|
||||
rpc Health(HealthMessage) returns (Reply) {}
|
||||
rpc Predict(PredictOptions) returns (Reply) {}
|
||||
rpc LoadModel(ModelOptions) returns (Result) {}
|
||||
rpc PredictStream(PredictOptions) returns (stream Reply) {}
|
||||
rpc Embedding(PredictOptions) returns (EmbeddingResult) {}
|
||||
rpc GenerateImage(GenerateImageRequest) returns (Result) {}
|
||||
rpc AudioTranscription(TranscriptRequest) returns (TranscriptResult) {}
|
||||
rpc TTS(TTSRequest) returns (Result) {}
|
||||
rpc TokenizeString(PredictOptions) returns (TokenizationResponse) {}
|
||||
rpc Status(HealthMessage) returns (StatusResponse) {}
|
||||
}
|
||||
|
||||
message HealthMessage {}
|
||||
|
||||
// The request message containing the user's name.
|
||||
message PredictOptions {
|
||||
string Prompt = 1;
|
||||
int32 Seed = 2;
|
||||
int32 Threads = 3;
|
||||
int32 Tokens = 4;
|
||||
int32 TopK = 5;
|
||||
int32 Repeat = 6;
|
||||
int32 Batch = 7;
|
||||
int32 NKeep = 8;
|
||||
float Temperature = 9;
|
||||
float Penalty = 10;
|
||||
bool F16KV = 11;
|
||||
bool DebugMode = 12;
|
||||
repeated string StopPrompts = 13;
|
||||
bool IgnoreEOS = 14;
|
||||
float TailFreeSamplingZ = 15;
|
||||
float TypicalP = 16;
|
||||
float FrequencyPenalty = 17;
|
||||
float PresencePenalty = 18;
|
||||
int32 Mirostat = 19;
|
||||
float MirostatETA = 20;
|
||||
float MirostatTAU = 21;
|
||||
bool PenalizeNL = 22;
|
||||
string LogitBias = 23;
|
||||
bool MLock = 25;
|
||||
bool MMap = 26;
|
||||
bool PromptCacheAll = 27;
|
||||
bool PromptCacheRO = 28;
|
||||
string Grammar = 29;
|
||||
string MainGPU = 30;
|
||||
string TensorSplit = 31;
|
||||
float TopP = 32;
|
||||
string PromptCachePath = 33;
|
||||
bool Debug = 34;
|
||||
repeated int32 EmbeddingTokens = 35;
|
||||
string Embeddings = 36;
|
||||
float RopeFreqBase = 37;
|
||||
float RopeFreqScale = 38;
|
||||
float NegativePromptScale = 39;
|
||||
string NegativePrompt = 40;
|
||||
int32 NDraft = 41;
|
||||
repeated string Images = 42;
|
||||
}
|
||||
|
||||
// The response message containing the result
|
||||
message Reply {
|
||||
bytes message = 1;
|
||||
}
|
||||
|
||||
message ModelOptions {
|
||||
string Model = 1;
|
||||
int32 ContextSize = 2;
|
||||
int32 Seed = 3;
|
||||
int32 NBatch = 4;
|
||||
bool F16Memory = 5;
|
||||
bool MLock = 6;
|
||||
bool MMap = 7;
|
||||
bool VocabOnly = 8;
|
||||
bool LowVRAM = 9;
|
||||
bool Embeddings = 10;
|
||||
bool NUMA = 11;
|
||||
int32 NGPULayers = 12;
|
||||
string MainGPU = 13;
|
||||
string TensorSplit = 14;
|
||||
int32 Threads = 15;
|
||||
string LibrarySearchPath = 16;
|
||||
float RopeFreqBase = 17;
|
||||
float RopeFreqScale = 18;
|
||||
float RMSNormEps = 19;
|
||||
int32 NGQA = 20;
|
||||
string ModelFile = 21;
|
||||
|
||||
// AutoGPTQ
|
||||
string Device = 22;
|
||||
bool UseTriton = 23;
|
||||
string ModelBaseName = 24;
|
||||
bool UseFastTokenizer = 25;
|
||||
|
||||
// Diffusers
|
||||
string PipelineType = 26;
|
||||
string SchedulerType = 27;
|
||||
bool CUDA = 28;
|
||||
float CFGScale = 29;
|
||||
bool IMG2IMG = 30;
|
||||
string CLIPModel = 31;
|
||||
string CLIPSubfolder = 32;
|
||||
int32 CLIPSkip = 33;
|
||||
|
||||
// RWKV
|
||||
string Tokenizer = 34;
|
||||
|
||||
// LLM (llama.cpp)
|
||||
string LoraBase = 35;
|
||||
string LoraAdapter = 36;
|
||||
float LoraScale = 42;
|
||||
|
||||
bool NoMulMatQ = 37;
|
||||
string DraftModel = 39;
|
||||
|
||||
string AudioPath = 38;
|
||||
|
||||
// vllm
|
||||
string Quantization = 40;
|
||||
|
||||
string MMProj = 41;
|
||||
|
||||
string RopeScaling = 43;
|
||||
float YarnExtFactor = 44;
|
||||
float YarnAttnFactor = 45;
|
||||
float YarnBetaFast = 46;
|
||||
float YarnBetaSlow = 47;
|
||||
}
|
||||
|
||||
message Result {
|
||||
string message = 1;
|
||||
bool success = 2;
|
||||
}
|
||||
|
||||
message EmbeddingResult {
|
||||
repeated float embeddings = 1;
|
||||
}
|
||||
|
||||
message TranscriptRequest {
|
||||
string dst = 2;
|
||||
string language = 3;
|
||||
uint32 threads = 4;
|
||||
}
|
||||
|
||||
message TranscriptResult {
|
||||
repeated TranscriptSegment segments = 1;
|
||||
string text = 2;
|
||||
}
|
||||
|
||||
message TranscriptSegment {
|
||||
int32 id = 1;
|
||||
int64 start = 2;
|
||||
int64 end = 3;
|
||||
string text = 4;
|
||||
repeated int32 tokens = 5;
|
||||
}
|
||||
|
||||
message GenerateImageRequest {
|
||||
int32 height = 1;
|
||||
int32 width = 2;
|
||||
int32 mode = 3;
|
||||
int32 step = 4;
|
||||
int32 seed = 5;
|
||||
string positive_prompt = 6;
|
||||
string negative_prompt = 7;
|
||||
string dst = 8;
|
||||
string src = 9;
|
||||
|
||||
// Diffusers
|
||||
string EnableParameters = 10;
|
||||
int32 CLIPSkip = 11;
|
||||
}
|
||||
|
||||
message TTSRequest {
|
||||
string text = 1;
|
||||
string model = 2;
|
||||
string dst = 3;
|
||||
}
|
||||
|
||||
message TokenizationResponse {
|
||||
int32 length = 1;
|
||||
repeated int32 tokens = 2;
|
||||
}
|
||||
|
||||
message MemoryUsageData {
|
||||
uint64 total = 1;
|
||||
map<string, uint64> breakdown = 2;
|
||||
}
|
||||
|
||||
message StatusResponse {
|
||||
enum State {
|
||||
UNINITIALIZED = 0;
|
||||
BUSY = 1;
|
||||
READY = 2;
|
||||
ERROR = -1;
|
||||
}
|
||||
State state = 1;
|
||||
MemoryUsageData memory = 2;
|
||||
}
|
|
@ -36,7 +36,7 @@ include_directories(${Protobuf_INCLUDE_DIRS})
|
|||
message(STATUS "Using protobuf version ${Protobuf_VERSION} | Protobuf_INCLUDE_DIRS: ${Protobuf_INCLUDE_DIRS} | CMAKE_CURRENT_BINARY_DIR: ${CMAKE_CURRENT_BINARY_DIR}")
|
||||
|
||||
# Proto file
|
||||
get_filename_component(hw_proto "../../../../../../pkg/grpc/proto/backend.proto" ABSOLUTE)
|
||||
get_filename_component(hw_proto "../../../../../../backend/backend.proto" ABSOLUTE)
|
||||
get_filename_component(hw_proto_path "${hw_proto}" PATH)
|
||||
|
||||
# Generated sources
|
||||
|
|
21
backend/go/image/main.go
Normal file
21
backend/go/image/main.go
Normal file
|
@ -0,0 +1,21 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &StableDiffusion{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
33
backend/go/image/stablediffusion.go
Normal file
33
backend/go/image/stablediffusion.go
Normal file
|
@ -0,0 +1,33 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/stablediffusion"
|
||||
)
|
||||
|
||||
type StableDiffusion struct {
|
||||
base.SingleThread
|
||||
stablediffusion *stablediffusion.StableDiffusion
|
||||
}
|
||||
|
||||
func (sd *StableDiffusion) Load(opts *pb.ModelOptions) error {
|
||||
var err error
|
||||
// Note: the Model here is a path to a directory containing the model files
|
||||
sd.stablediffusion, err = stablediffusion.New(opts.ModelFile)
|
||||
return err
|
||||
}
|
||||
|
||||
func (sd *StableDiffusion) GenerateImage(opts *pb.GenerateImageRequest) error {
|
||||
return sd.stablediffusion.GenerateImage(
|
||||
int(opts.Height),
|
||||
int(opts.Width),
|
||||
int(opts.Mode),
|
||||
int(opts.Step),
|
||||
int(opts.Seed),
|
||||
opts.PositivePrompt,
|
||||
opts.NegativePrompt,
|
||||
opts.Dst)
|
||||
}
|
34
backend/go/llm/bert/bert.go
Normal file
34
backend/go/llm/bert/bert.go
Normal file
|
@ -0,0 +1,34 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
bert "github.com/go-skynet/go-bert.cpp"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
)
|
||||
|
||||
type Embeddings struct {
|
||||
base.SingleThread
|
||||
bert *bert.Bert
|
||||
}
|
||||
|
||||
func (llm *Embeddings) Load(opts *pb.ModelOptions) error {
|
||||
model, err := bert.New(opts.ModelFile)
|
||||
llm.bert = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *Embeddings) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
|
||||
|
||||
if len(opts.EmbeddingTokens) > 0 {
|
||||
tokens := []int{}
|
||||
for _, t := range opts.EmbeddingTokens {
|
||||
tokens = append(tokens, int(t))
|
||||
}
|
||||
return llm.bert.TokenEmbeddings(tokens, bert.SetThreads(int(opts.Threads)))
|
||||
}
|
||||
|
||||
return llm.bert.Embeddings(opts.Embeddings, bert.SetThreads(int(opts.Threads)))
|
||||
}
|
21
backend/go/llm/bert/main.go
Normal file
21
backend/go/llm/bert/main.go
Normal file
|
@ -0,0 +1,21 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &Embeddings{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
23
backend/go/llm/dolly/main.go
Normal file
23
backend/go/llm/dolly/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.Dolly{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
23
backend/go/llm/falcon-ggml/main.go
Normal file
23
backend/go/llm/falcon-ggml/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.Falcon{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
23
backend/go/llm/gpt2/main.go
Normal file
23
backend/go/llm/gpt2/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.GPT2{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
62
backend/go/llm/gpt4all/gpt4all.go
Normal file
62
backend/go/llm/gpt4all/gpt4all.go
Normal file
|
@ -0,0 +1,62 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
gpt4all "github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
|
||||
)
|
||||
|
||||
type LLM struct {
|
||||
base.SingleThread
|
||||
|
||||
gpt4all *gpt4all.Model
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
model, err := gpt4all.New(opts.ModelFile,
|
||||
gpt4all.SetThreads(int(opts.Threads)),
|
||||
gpt4all.SetLibrarySearchPath(opts.LibrarySearchPath))
|
||||
llm.gpt4all = model
|
||||
return err
|
||||
}
|
||||
|
||||
func buildPredictOptions(opts *pb.PredictOptions) []gpt4all.PredictOption {
|
||||
predictOptions := []gpt4all.PredictOption{
|
||||
gpt4all.SetTemperature(float64(opts.Temperature)),
|
||||
gpt4all.SetTopP(float64(opts.TopP)),
|
||||
gpt4all.SetTopK(int(opts.TopK)),
|
||||
gpt4all.SetTokens(int(opts.Tokens)),
|
||||
}
|
||||
|
||||
if opts.Batch != 0 {
|
||||
predictOptions = append(predictOptions, gpt4all.SetBatch(int(opts.Batch)))
|
||||
}
|
||||
return predictOptions
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.gpt4all.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
go func() {
|
||||
llm.gpt4all.SetTokenCallback(func(token string) bool {
|
||||
results <- token
|
||||
return true
|
||||
})
|
||||
_, err := llm.gpt4all.Predict(opts.Prompt, predictOptions...)
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
llm.gpt4all.SetTokenCallback(nil)
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
21
backend/go/llm/gpt4all/main.go
Normal file
21
backend/go/llm/gpt4all/main.go
Normal file
|
@ -0,0 +1,21 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
23
backend/go/llm/gptj/main.go
Normal file
23
backend/go/llm/gptj/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.GPTJ{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
23
backend/go/llm/gptneox/main.go
Normal file
23
backend/go/llm/gptneox/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.GPTNeoX{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
58
backend/go/llm/langchain/langchain.go
Normal file
58
backend/go/llm/langchain/langchain.go
Normal file
|
@ -0,0 +1,58 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/langchain"
|
||||
)
|
||||
|
||||
type LLM struct {
|
||||
base.Base
|
||||
|
||||
langchain *langchain.HuggingFace
|
||||
model string
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
llm.langchain, _ = langchain.NewHuggingFace(opts.Model)
|
||||
llm.model = opts.Model
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
o := []langchain.PredictOption{
|
||||
langchain.SetModel(llm.model),
|
||||
langchain.SetMaxTokens(int(opts.Tokens)),
|
||||
langchain.SetTemperature(float64(opts.Temperature)),
|
||||
langchain.SetStopWords(opts.StopPrompts),
|
||||
}
|
||||
pred, err := llm.langchain.PredictHuggingFace(opts.Prompt, o...)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return pred.Completion, nil
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
o := []langchain.PredictOption{
|
||||
langchain.SetModel(llm.model),
|
||||
langchain.SetMaxTokens(int(opts.Tokens)),
|
||||
langchain.SetTemperature(float64(opts.Temperature)),
|
||||
langchain.SetStopWords(opts.StopPrompts),
|
||||
}
|
||||
go func() {
|
||||
res, err := llm.langchain.PredictHuggingFace(opts.Prompt, o...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res.Completion
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
21
backend/go/llm/langchain/main.go
Normal file
21
backend/go/llm/langchain/main.go
Normal file
|
@ -0,0 +1,21 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
204
backend/go/llm/llama-stable/llama.go
Normal file
204
backend/go/llm/llama-stable/llama.go
Normal file
|
@ -0,0 +1,204 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/go-llama.cpp"
|
||||
)
|
||||
|
||||
type LLM struct {
|
||||
base.SingleThread
|
||||
|
||||
llama *llama.LLama
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
ropeFreqBase := float32(10000)
|
||||
ropeFreqScale := float32(1)
|
||||
|
||||
if opts.RopeFreqBase != 0 {
|
||||
ropeFreqBase = opts.RopeFreqBase
|
||||
}
|
||||
if opts.RopeFreqScale != 0 {
|
||||
ropeFreqScale = opts.RopeFreqScale
|
||||
}
|
||||
|
||||
llamaOpts := []llama.ModelOption{
|
||||
llama.WithRopeFreqBase(ropeFreqBase),
|
||||
llama.WithRopeFreqScale(ropeFreqScale),
|
||||
}
|
||||
|
||||
if opts.NGQA != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.WithGQA(int(opts.NGQA)))
|
||||
}
|
||||
|
||||
if opts.RMSNormEps != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.WithRMSNormEPS(opts.RMSNormEps))
|
||||
}
|
||||
|
||||
if opts.ContextSize != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetContext(int(opts.ContextSize)))
|
||||
}
|
||||
if opts.F16Memory {
|
||||
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
|
||||
}
|
||||
if opts.Embeddings {
|
||||
llamaOpts = append(llamaOpts, llama.EnableEmbeddings)
|
||||
}
|
||||
if opts.NGPULayers != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetGPULayers(int(opts.NGPULayers)))
|
||||
}
|
||||
|
||||
llamaOpts = append(llamaOpts, llama.SetMMap(opts.MMap))
|
||||
llamaOpts = append(llamaOpts, llama.SetMainGPU(opts.MainGPU))
|
||||
llamaOpts = append(llamaOpts, llama.SetTensorSplit(opts.TensorSplit))
|
||||
if opts.NBatch != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetNBatch(int(opts.NBatch)))
|
||||
} else {
|
||||
llamaOpts = append(llamaOpts, llama.SetNBatch(512))
|
||||
}
|
||||
|
||||
if opts.NUMA {
|
||||
llamaOpts = append(llamaOpts, llama.EnableNUMA)
|
||||
}
|
||||
|
||||
if opts.LowVRAM {
|
||||
llamaOpts = append(llamaOpts, llama.EnabelLowVRAM)
|
||||
}
|
||||
|
||||
model, err := llama.New(opts.ModelFile, llamaOpts...)
|
||||
llm.llama = model
|
||||
|
||||
return err
|
||||
}
|
||||
|
||||
func buildPredictOptions(opts *pb.PredictOptions) []llama.PredictOption {
|
||||
ropeFreqBase := float32(10000)
|
||||
ropeFreqScale := float32(1)
|
||||
|
||||
if opts.RopeFreqBase != 0 {
|
||||
ropeFreqBase = opts.RopeFreqBase
|
||||
}
|
||||
if opts.RopeFreqScale != 0 {
|
||||
ropeFreqScale = opts.RopeFreqScale
|
||||
}
|
||||
predictOptions := []llama.PredictOption{
|
||||
llama.SetTemperature(opts.Temperature),
|
||||
llama.SetTopP(opts.TopP),
|
||||
llama.SetTopK(int(opts.TopK)),
|
||||
llama.SetTokens(int(opts.Tokens)),
|
||||
llama.SetThreads(int(opts.Threads)),
|
||||
llama.WithGrammar(opts.Grammar),
|
||||
llama.SetRopeFreqBase(ropeFreqBase),
|
||||
llama.SetRopeFreqScale(ropeFreqScale),
|
||||
llama.SetNegativePromptScale(opts.NegativePromptScale),
|
||||
llama.SetNegativePrompt(opts.NegativePrompt),
|
||||
}
|
||||
|
||||
if opts.PromptCacheAll {
|
||||
predictOptions = append(predictOptions, llama.EnablePromptCacheAll)
|
||||
}
|
||||
|
||||
if opts.PromptCacheRO {
|
||||
predictOptions = append(predictOptions, llama.EnablePromptCacheRO)
|
||||
}
|
||||
|
||||
// Expected absolute path
|
||||
if opts.PromptCachePath != "" {
|
||||
predictOptions = append(predictOptions, llama.SetPathPromptCache(opts.PromptCachePath))
|
||||
}
|
||||
|
||||
if opts.Mirostat != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostat(int(opts.Mirostat)))
|
||||
}
|
||||
|
||||
if opts.MirostatETA != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostatETA(opts.MirostatETA))
|
||||
}
|
||||
|
||||
if opts.MirostatTAU != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostatTAU(opts.MirostatTAU))
|
||||
}
|
||||
|
||||
if opts.Debug {
|
||||
predictOptions = append(predictOptions, llama.Debug)
|
||||
}
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetStopWords(opts.StopPrompts...))
|
||||
|
||||
if opts.PresencePenalty != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetPenalty(opts.PresencePenalty))
|
||||
}
|
||||
|
||||
if opts.NKeep != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetNKeep(int(opts.NKeep)))
|
||||
}
|
||||
|
||||
if opts.Batch != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetBatch(int(opts.Batch)))
|
||||
}
|
||||
|
||||
if opts.F16KV {
|
||||
predictOptions = append(predictOptions, llama.EnableF16KV)
|
||||
}
|
||||
|
||||
if opts.IgnoreEOS {
|
||||
predictOptions = append(predictOptions, llama.IgnoreEOS)
|
||||
}
|
||||
|
||||
if opts.Seed != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetSeed(int(opts.Seed)))
|
||||
}
|
||||
|
||||
//predictOptions = append(predictOptions, llama.SetLogitBias(c.Seed))
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetFrequencyPenalty(opts.FrequencyPenalty))
|
||||
predictOptions = append(predictOptions, llama.SetMlock(opts.MLock))
|
||||
predictOptions = append(predictOptions, llama.SetMemoryMap(opts.MMap))
|
||||
predictOptions = append(predictOptions, llama.SetPredictionMainGPU(opts.MainGPU))
|
||||
predictOptions = append(predictOptions, llama.SetPredictionTensorSplit(opts.TensorSplit))
|
||||
predictOptions = append(predictOptions, llama.SetTailFreeSamplingZ(opts.TailFreeSamplingZ))
|
||||
predictOptions = append(predictOptions, llama.SetTypicalP(opts.TypicalP))
|
||||
return predictOptions
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.llama.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetTokenCallback(func(token string) bool {
|
||||
results <- token
|
||||
return true
|
||||
}))
|
||||
|
||||
go func() {
|
||||
_, err := llm.llama.Predict(opts.Prompt, predictOptions...)
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
if len(opts.EmbeddingTokens) > 0 {
|
||||
tokens := []int{}
|
||||
for _, t := range opts.EmbeddingTokens {
|
||||
tokens = append(tokens, int(t))
|
||||
}
|
||||
return llm.llama.TokenEmbeddings(tokens, predictOptions...)
|
||||
}
|
||||
|
||||
return llm.llama.Embeddings(opts.Embeddings, predictOptions...)
|
||||
}
|
19
backend/go/llm/llama-stable/main.go
Normal file
19
backend/go/llm/llama-stable/main.go
Normal file
|
@ -0,0 +1,19 @@
|
|||
package main
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
257
backend/go/llm/llama/llama.go
Normal file
257
backend/go/llm/llama/llama.go
Normal file
|
@ -0,0 +1,257 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
"path/filepath"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/go-llama.cpp"
|
||||
)
|
||||
|
||||
type LLM struct {
|
||||
base.SingleThread
|
||||
|
||||
llama *llama.LLama
|
||||
draftModel *llama.LLama
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
ropeFreqBase := float32(10000)
|
||||
ropeFreqScale := float32(1)
|
||||
|
||||
if opts.RopeFreqBase != 0 {
|
||||
ropeFreqBase = opts.RopeFreqBase
|
||||
}
|
||||
if opts.RopeFreqScale != 0 {
|
||||
ropeFreqScale = opts.RopeFreqScale
|
||||
}
|
||||
|
||||
llamaOpts := []llama.ModelOption{
|
||||
llama.WithRopeFreqBase(ropeFreqBase),
|
||||
llama.WithRopeFreqScale(ropeFreqScale),
|
||||
}
|
||||
|
||||
if opts.NoMulMatQ {
|
||||
llamaOpts = append(llamaOpts, llama.SetMulMatQ(false))
|
||||
}
|
||||
|
||||
// Get base path of opts.ModelFile and use the same for lora (assume the same path)
|
||||
basePath := filepath.Dir(opts.ModelFile)
|
||||
|
||||
if opts.LoraAdapter != "" {
|
||||
llamaOpts = append(llamaOpts, llama.SetLoraAdapter(filepath.Join(basePath, opts.LoraAdapter)))
|
||||
}
|
||||
|
||||
if opts.LoraBase != "" {
|
||||
llamaOpts = append(llamaOpts, llama.SetLoraBase(filepath.Join(basePath, opts.LoraBase)))
|
||||
}
|
||||
|
||||
if opts.ContextSize != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetContext(int(opts.ContextSize)))
|
||||
}
|
||||
if opts.F16Memory {
|
||||
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
|
||||
}
|
||||
if opts.Embeddings {
|
||||
llamaOpts = append(llamaOpts, llama.EnableEmbeddings)
|
||||
}
|
||||
if opts.NGPULayers != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetGPULayers(int(opts.NGPULayers)))
|
||||
}
|
||||
|
||||
llamaOpts = append(llamaOpts, llama.SetMMap(opts.MMap))
|
||||
llamaOpts = append(llamaOpts, llama.SetMainGPU(opts.MainGPU))
|
||||
llamaOpts = append(llamaOpts, llama.SetTensorSplit(opts.TensorSplit))
|
||||
if opts.NBatch != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetNBatch(int(opts.NBatch)))
|
||||
} else {
|
||||
llamaOpts = append(llamaOpts, llama.SetNBatch(512))
|
||||
}
|
||||
|
||||
if opts.NUMA {
|
||||
llamaOpts = append(llamaOpts, llama.EnableNUMA)
|
||||
}
|
||||
|
||||
if opts.LowVRAM {
|
||||
llamaOpts = append(llamaOpts, llama.EnabelLowVRAM)
|
||||
}
|
||||
|
||||
if opts.DraftModel != "" {
|
||||
// https://github.com/ggerganov/llama.cpp/blob/71ca2fad7d6c0ef95ef9944fb3a1a843e481f314/examples/speculative/speculative.cpp#L40
|
||||
llamaOpts = append(llamaOpts, llama.SetPerplexity(true))
|
||||
}
|
||||
|
||||
model, err := llama.New(opts.ModelFile, llamaOpts...)
|
||||
|
||||
if opts.DraftModel != "" {
|
||||
// opts.DraftModel is relative to opts.ModelFile, so we need to get the basepath of opts.ModelFile
|
||||
if !filepath.IsAbs(opts.DraftModel) {
|
||||
dir := filepath.Dir(opts.ModelFile)
|
||||
opts.DraftModel = filepath.Join(dir, opts.DraftModel)
|
||||
}
|
||||
|
||||
draftModel, err := llama.New(opts.DraftModel, llamaOpts...)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
llm.draftModel = draftModel
|
||||
}
|
||||
|
||||
llm.llama = model
|
||||
|
||||
return err
|
||||
}
|
||||
|
||||
func buildPredictOptions(opts *pb.PredictOptions) []llama.PredictOption {
|
||||
ropeFreqBase := float32(10000)
|
||||
ropeFreqScale := float32(1)
|
||||
|
||||
if opts.RopeFreqBase != 0 {
|
||||
ropeFreqBase = opts.RopeFreqBase
|
||||
}
|
||||
if opts.RopeFreqScale != 0 {
|
||||
ropeFreqScale = opts.RopeFreqScale
|
||||
}
|
||||
predictOptions := []llama.PredictOption{
|
||||
llama.SetTemperature(opts.Temperature),
|
||||
llama.SetTopP(opts.TopP),
|
||||
llama.SetTopK(int(opts.TopK)),
|
||||
llama.SetTokens(int(opts.Tokens)),
|
||||
llama.SetThreads(int(opts.Threads)),
|
||||
llama.WithGrammar(opts.Grammar),
|
||||
llama.SetRopeFreqBase(ropeFreqBase),
|
||||
llama.SetRopeFreqScale(ropeFreqScale),
|
||||
llama.SetNegativePromptScale(opts.NegativePromptScale),
|
||||
llama.SetNegativePrompt(opts.NegativePrompt),
|
||||
}
|
||||
|
||||
if opts.PromptCacheAll {
|
||||
predictOptions = append(predictOptions, llama.EnablePromptCacheAll)
|
||||
}
|
||||
|
||||
if opts.PromptCacheRO {
|
||||
predictOptions = append(predictOptions, llama.EnablePromptCacheRO)
|
||||
}
|
||||
|
||||
// Expected absolute path
|
||||
if opts.PromptCachePath != "" {
|
||||
predictOptions = append(predictOptions, llama.SetPathPromptCache(opts.PromptCachePath))
|
||||
}
|
||||
|
||||
if opts.Mirostat != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostat(int(opts.Mirostat)))
|
||||
}
|
||||
|
||||
if opts.MirostatETA != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostatETA(opts.MirostatETA))
|
||||
}
|
||||
|
||||
if opts.MirostatTAU != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostatTAU(opts.MirostatTAU))
|
||||
}
|
||||
|
||||
if opts.Debug {
|
||||
predictOptions = append(predictOptions, llama.Debug)
|
||||
}
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetStopWords(opts.StopPrompts...))
|
||||
|
||||
if opts.PresencePenalty != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetPenalty(opts.PresencePenalty))
|
||||
}
|
||||
|
||||
if opts.NKeep != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetNKeep(int(opts.NKeep)))
|
||||
}
|
||||
|
||||
if opts.Batch != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetBatch(int(opts.Batch)))
|
||||
}
|
||||
|
||||
if opts.F16KV {
|
||||
predictOptions = append(predictOptions, llama.EnableF16KV)
|
||||
}
|
||||
|
||||
if opts.IgnoreEOS {
|
||||
predictOptions = append(predictOptions, llama.IgnoreEOS)
|
||||
}
|
||||
|
||||
if opts.Seed != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetSeed(int(opts.Seed)))
|
||||
}
|
||||
|
||||
if opts.NDraft != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetNDraft(int(opts.NDraft)))
|
||||
}
|
||||
//predictOptions = append(predictOptions, llama.SetLogitBias(c.Seed))
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetFrequencyPenalty(opts.FrequencyPenalty))
|
||||
predictOptions = append(predictOptions, llama.SetMlock(opts.MLock))
|
||||
predictOptions = append(predictOptions, llama.SetMemoryMap(opts.MMap))
|
||||
predictOptions = append(predictOptions, llama.SetPredictionMainGPU(opts.MainGPU))
|
||||
predictOptions = append(predictOptions, llama.SetPredictionTensorSplit(opts.TensorSplit))
|
||||
predictOptions = append(predictOptions, llama.SetTailFreeSamplingZ(opts.TailFreeSamplingZ))
|
||||
predictOptions = append(predictOptions, llama.SetTypicalP(opts.TypicalP))
|
||||
return predictOptions
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
if llm.draftModel != nil {
|
||||
return llm.llama.SpeculativeSampling(llm.draftModel, opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
return llm.llama.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetTokenCallback(func(token string) bool {
|
||||
results <- token
|
||||
return true
|
||||
}))
|
||||
|
||||
go func() {
|
||||
var err error
|
||||
if llm.draftModel != nil {
|
||||
_, err = llm.llama.SpeculativeSampling(llm.draftModel, opts.Prompt, buildPredictOptions(opts)...)
|
||||
} else {
|
||||
_, err = llm.llama.Predict(opts.Prompt, predictOptions...)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
if len(opts.EmbeddingTokens) > 0 {
|
||||
tokens := []int{}
|
||||
for _, t := range opts.EmbeddingTokens {
|
||||
tokens = append(tokens, int(t))
|
||||
}
|
||||
return llm.llama.TokenEmbeddings(tokens, predictOptions...)
|
||||
}
|
||||
|
||||
return llm.llama.Embeddings(opts.Embeddings, predictOptions...)
|
||||
}
|
||||
|
||||
func (llm *LLM) TokenizeString(opts *pb.PredictOptions) (pb.TokenizationResponse, error) {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
l, tokens, err := llm.llama.TokenizeString(opts.Prompt, predictOptions...)
|
||||
if err != nil {
|
||||
return pb.TokenizationResponse{}, err
|
||||
}
|
||||
return pb.TokenizationResponse{
|
||||
Length: l,
|
||||
Tokens: tokens,
|
||||
}, nil
|
||||
}
|
23
backend/go/llm/llama/main.go
Normal file
23
backend/go/llm/llama/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// GRPC Falcon server
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
23
backend/go/llm/mpt/main.go
Normal file
23
backend/go/llm/mpt/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.MPT{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
23
backend/go/llm/replit/main.go
Normal file
23
backend/go/llm/replit/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.Replit{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
21
backend/go/llm/rwkv/main.go
Normal file
21
backend/go/llm/rwkv/main.go
Normal file
|
@ -0,0 +1,21 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
95
backend/go/llm/rwkv/rwkv.go
Normal file
95
backend/go/llm/rwkv/rwkv.go
Normal file
|
@ -0,0 +1,95 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
"path/filepath"
|
||||
|
||||
"github.com/donomii/go-rwkv.cpp"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
)
|
||||
|
||||
const tokenizerSuffix = ".tokenizer.json"
|
||||
|
||||
type LLM struct {
|
||||
base.SingleThread
|
||||
|
||||
rwkv *rwkv.RwkvState
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
tokenizerFile := opts.Tokenizer
|
||||
if tokenizerFile == "" {
|
||||
modelFile := filepath.Base(opts.ModelFile)
|
||||
tokenizerFile = modelFile + tokenizerSuffix
|
||||
}
|
||||
modelPath := filepath.Dir(opts.ModelFile)
|
||||
tokenizerPath := filepath.Join(modelPath, tokenizerFile)
|
||||
|
||||
model := rwkv.LoadFiles(opts.ModelFile, tokenizerPath, uint32(opts.GetThreads()))
|
||||
|
||||
if model == nil {
|
||||
return fmt.Errorf("could not load model")
|
||||
}
|
||||
llm.rwkv = model
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
stopWord := "\n"
|
||||
if len(opts.StopPrompts) > 0 {
|
||||
stopWord = opts.StopPrompts[0]
|
||||
}
|
||||
|
||||
if err := llm.rwkv.ProcessInput(opts.Prompt); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
response := llm.rwkv.GenerateResponse(int(opts.Tokens), stopWord, float32(opts.Temperature), float32(opts.TopP), nil)
|
||||
|
||||
return response, nil
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
|
||||
stopWord := "\n"
|
||||
if len(opts.StopPrompts) > 0 {
|
||||
stopWord = opts.StopPrompts[0]
|
||||
}
|
||||
|
||||
if err := llm.rwkv.ProcessInput(opts.Prompt); err != nil {
|
||||
fmt.Println("Error processing input: ", err)
|
||||
return
|
||||
}
|
||||
|
||||
llm.rwkv.GenerateResponse(int(opts.Tokens), stopWord, float32(opts.Temperature), float32(opts.TopP), func(s string) bool {
|
||||
results <- s
|
||||
return true
|
||||
})
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) TokenizeString(opts *pb.PredictOptions) (pb.TokenizationResponse, error) {
|
||||
tokens, err := llm.rwkv.Tokenizer.Encode(opts.Prompt)
|
||||
if err != nil {
|
||||
return pb.TokenizationResponse{}, err
|
||||
}
|
||||
|
||||
l := len(tokens)
|
||||
i32Tokens := make([]int32, l)
|
||||
|
||||
for i, t := range tokens {
|
||||
i32Tokens[i] = int32(t.ID)
|
||||
}
|
||||
|
||||
return pb.TokenizationResponse{
|
||||
Length: int32(l),
|
||||
Tokens: i32Tokens,
|
||||
}, nil
|
||||
}
|
23
backend/go/llm/starcoder/main.go
Normal file
23
backend/go/llm/starcoder/main.go
Normal file
|
@ -0,0 +1,23 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
transformers "github.com/go-skynet/LocalAI/backend/go/llm/transformers"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &transformers.Starcoder{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
44
backend/go/llm/transformers/dolly.go
Normal file
44
backend/go/llm/transformers/dolly.go
Normal file
|
@ -0,0 +1,44 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type Dolly struct {
|
||||
base.SingleThread
|
||||
|
||||
dolly *transformers.Dolly
|
||||
}
|
||||
|
||||
func (llm *Dolly) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.NewDolly(opts.ModelFile)
|
||||
llm.dolly = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *Dolly) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.dolly.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *Dolly) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
|
||||
go func() {
|
||||
res, err := llm.dolly.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
43
backend/go/llm/transformers/falcon.go
Normal file
43
backend/go/llm/transformers/falcon.go
Normal file
|
@ -0,0 +1,43 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type Falcon struct {
|
||||
base.SingleThread
|
||||
|
||||
falcon *transformers.Falcon
|
||||
}
|
||||
|
||||
func (llm *Falcon) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.NewFalcon(opts.ModelFile)
|
||||
llm.falcon = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *Falcon) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.falcon.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *Falcon) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.falcon.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
42
backend/go/llm/transformers/gpt2.go
Normal file
42
backend/go/llm/transformers/gpt2.go
Normal file
|
@ -0,0 +1,42 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type GPT2 struct {
|
||||
base.SingleThread
|
||||
|
||||
gpt2 *transformers.GPT2
|
||||
}
|
||||
|
||||
func (llm *GPT2) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.New(opts.ModelFile)
|
||||
llm.gpt2 = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *GPT2) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.gpt2.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *GPT2) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.gpt2.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
return nil
|
||||
}
|
42
backend/go/llm/transformers/gptj.go
Normal file
42
backend/go/llm/transformers/gptj.go
Normal file
|
@ -0,0 +1,42 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type GPTJ struct {
|
||||
base.SingleThread
|
||||
|
||||
gptj *transformers.GPTJ
|
||||
}
|
||||
|
||||
func (llm *GPTJ) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.NewGPTJ(opts.ModelFile)
|
||||
llm.gptj = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *GPTJ) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.gptj.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *GPTJ) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.gptj.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
return nil
|
||||
}
|
42
backend/go/llm/transformers/gptneox.go
Normal file
42
backend/go/llm/transformers/gptneox.go
Normal file
|
@ -0,0 +1,42 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type GPTNeoX struct {
|
||||
base.SingleThread
|
||||
|
||||
gptneox *transformers.GPTNeoX
|
||||
}
|
||||
|
||||
func (llm *GPTNeoX) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.NewGPTNeoX(opts.ModelFile)
|
||||
llm.gptneox = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *GPTNeoX) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.gptneox.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *GPTNeoX) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.gptneox.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
return nil
|
||||
}
|
42
backend/go/llm/transformers/mpt.go
Normal file
42
backend/go/llm/transformers/mpt.go
Normal file
|
@ -0,0 +1,42 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type MPT struct {
|
||||
base.SingleThread
|
||||
|
||||
mpt *transformers.MPT
|
||||
}
|
||||
|
||||
func (llm *MPT) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.NewMPT(opts.ModelFile)
|
||||
llm.mpt = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *MPT) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.mpt.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *MPT) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.mpt.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
return nil
|
||||
}
|
26
backend/go/llm/transformers/predict.go
Normal file
26
backend/go/llm/transformers/predict.go
Normal file
|
@ -0,0 +1,26 @@
|
|||
package transformers
|
||||
|
||||
import (
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
func buildPredictOptions(opts *pb.PredictOptions) []transformers.PredictOption {
|
||||
predictOptions := []transformers.PredictOption{
|
||||
transformers.SetTemperature(float64(opts.Temperature)),
|
||||
transformers.SetTopP(float64(opts.TopP)),
|
||||
transformers.SetTopK(int(opts.TopK)),
|
||||
transformers.SetTokens(int(opts.Tokens)),
|
||||
transformers.SetThreads(int(opts.Threads)),
|
||||
}
|
||||
|
||||
if opts.Batch != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetBatch(int(opts.Batch)))
|
||||
}
|
||||
|
||||
if opts.Seed != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetSeed(int(opts.Seed)))
|
||||
}
|
||||
|
||||
return predictOptions
|
||||
}
|
42
backend/go/llm/transformers/replit.go
Normal file
42
backend/go/llm/transformers/replit.go
Normal file
|
@ -0,0 +1,42 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type Replit struct {
|
||||
base.SingleThread
|
||||
|
||||
replit *transformers.Replit
|
||||
}
|
||||
|
||||
func (llm *Replit) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.NewReplit(opts.ModelFile)
|
||||
llm.replit = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *Replit) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.replit.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *Replit) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.replit.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
return nil
|
||||
}
|
43
backend/go/llm/transformers/starcoder.go
Normal file
43
backend/go/llm/transformers/starcoder.go
Normal file
|
@ -0,0 +1,43 @@
|
|||
package transformers
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
)
|
||||
|
||||
type Starcoder struct {
|
||||
base.SingleThread
|
||||
|
||||
starcoder *transformers.Starcoder
|
||||
}
|
||||
|
||||
func (llm *Starcoder) Load(opts *pb.ModelOptions) error {
|
||||
model, err := transformers.NewStarcoder(opts.ModelFile)
|
||||
llm.starcoder = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *Starcoder) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.starcoder.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *Starcoder) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.starcoder.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
21
backend/go/transcribe/main.go
Normal file
21
backend/go/transcribe/main.go
Normal file
|
@ -0,0 +1,21 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &Whisper{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
100
backend/go/transcribe/transcript.go
Normal file
100
backend/go/transcribe/transcript.go
Normal file
|
@ -0,0 +1,100 @@
|
|||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path/filepath"
|
||||
|
||||
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
|
||||
"github.com/go-audio/wav"
|
||||
"github.com/go-skynet/LocalAI/api/schema"
|
||||
)
|
||||
|
||||
func sh(c string) (string, error) {
|
||||
cmd := exec.Command("/bin/sh", "-c", c)
|
||||
cmd.Env = os.Environ()
|
||||
o, err := cmd.CombinedOutput()
|
||||
return string(o), err
|
||||
}
|
||||
|
||||
// AudioToWav converts audio to wav for transcribe. It bashes out to ffmpeg
|
||||
// TODO: use https://github.com/mccoyst/ogg?
|
||||
func audioToWav(src, dst string) error {
|
||||
out, err := sh(fmt.Sprintf("ffmpeg -i %s -format s16le -ar 16000 -ac 1 -acodec pcm_s16le %s", src, dst))
|
||||
if err != nil {
|
||||
return fmt.Errorf("error: %w out: %s", err, out)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func Transcript(model whisper.Model, audiopath, language string, threads uint) (schema.Result, error) {
|
||||
res := schema.Result{}
|
||||
|
||||
dir, err := os.MkdirTemp("", "whisper")
|
||||
if err != nil {
|
||||
return res, err
|
||||
}
|
||||
defer os.RemoveAll(dir)
|
||||
|
||||
convertedPath := filepath.Join(dir, "converted.wav")
|
||||
|
||||
if err := audioToWav(audiopath, convertedPath); err != nil {
|
||||
return res, err
|
||||
}
|
||||
|
||||
// Open samples
|
||||
fh, err := os.Open(convertedPath)
|
||||
if err != nil {
|
||||
return res, err
|
||||
}
|
||||
defer fh.Close()
|
||||
|
||||
// Read samples
|
||||
d := wav.NewDecoder(fh)
|
||||
buf, err := d.FullPCMBuffer()
|
||||
if err != nil {
|
||||
return res, err
|
||||
}
|
||||
|
||||
data := buf.AsFloat32Buffer().Data
|
||||
|
||||
// Process samples
|
||||
context, err := model.NewContext()
|
||||
if err != nil {
|
||||
return res, err
|
||||
|
||||
}
|
||||
|
||||
context.SetThreads(threads)
|
||||
|
||||
if language != "" {
|
||||
context.SetLanguage(language)
|
||||
} else {
|
||||
context.SetLanguage("auto")
|
||||
}
|
||||
|
||||
if err := context.Process(data, nil, nil); err != nil {
|
||||
return res, err
|
||||
}
|
||||
|
||||
for {
|
||||
s, err := context.NextSegment()
|
||||
if err != nil {
|
||||
break
|
||||
}
|
||||
|
||||
var tokens []int
|
||||
for _, t := range s.Tokens {
|
||||
tokens = append(tokens, t.Id)
|
||||
}
|
||||
|
||||
segment := schema.Segment{Id: s.Num, Text: s.Text, Start: s.Start, End: s.End, Tokens: tokens}
|
||||
res.Segments = append(res.Segments, segment)
|
||||
|
||||
res.Text += s.Text
|
||||
}
|
||||
|
||||
return res, nil
|
||||
}
|
26
backend/go/transcribe/whisper.go
Normal file
26
backend/go/transcribe/whisper.go
Normal file
|
@ -0,0 +1,26 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
|
||||
"github.com/go-skynet/LocalAI/api/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
)
|
||||
|
||||
type Whisper struct {
|
||||
base.SingleThread
|
||||
whisper whisper.Model
|
||||
}
|
||||
|
||||
func (sd *Whisper) Load(opts *pb.ModelOptions) error {
|
||||
// Note: the Model here is a path to a directory containing the model files
|
||||
w, err := whisper.New(opts.ModelFile)
|
||||
sd.whisper = w
|
||||
return err
|
||||
}
|
||||
|
||||
func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (schema.Result, error) {
|
||||
return Transcript(sd.whisper, opts.Dst, opts.Language, uint(opts.Threads))
|
||||
}
|
21
backend/go/tts/main.go
Normal file
21
backend/go/tts/main.go
Normal file
|
@ -0,0 +1,21 @@
|
|||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &Piper{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
49
backend/go/tts/piper.go
Normal file
49
backend/go/tts/piper.go
Normal file
|
@ -0,0 +1,49 @@
|
|||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
"path/filepath"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
piper "github.com/mudler/go-piper"
|
||||
)
|
||||
|
||||
type Piper struct {
|
||||
base.SingleThread
|
||||
piper *PiperB
|
||||
}
|
||||
|
||||
func (sd *Piper) Load(opts *pb.ModelOptions) error {
|
||||
if filepath.Ext(opts.ModelFile) != ".onnx" {
|
||||
return fmt.Errorf("unsupported model type %s (should end with .onnx)", opts.ModelFile)
|
||||
}
|
||||
var err error
|
||||
// Note: the Model here is a path to a directory containing the model files
|
||||
sd.piper, err = New(opts.LibrarySearchPath)
|
||||
return err
|
||||
}
|
||||
|
||||
func (sd *Piper) TTS(opts *pb.TTSRequest) error {
|
||||
return sd.piper.TTS(opts.Text, opts.Model, opts.Dst)
|
||||
}
|
||||
|
||||
type PiperB struct {
|
||||
assetDir string
|
||||
}
|
||||
|
||||
func New(assetDir string) (*PiperB, error) {
|
||||
if _, err := os.Stat(assetDir); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return &PiperB{
|
||||
assetDir: assetDir,
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (s *PiperB) TTS(text, model, dst string) error {
|
||||
return piper.TextToWav(text, model, s.assetDir, "", dst)
|
||||
}
|
38
backend/python/README.md
Normal file
38
backend/python/README.md
Normal file
|
@ -0,0 +1,38 @@
|
|||
# Common commands about conda environment
|
||||
|
||||
## Create a new empty conda environment
|
||||
|
||||
```
|
||||
conda create --name <env-name> python=<your version> -y
|
||||
|
||||
conda create --name autogptq python=3.11 -y
|
||||
```
|
||||
|
||||
## To activate the environment
|
||||
|
||||
As of conda 4.4
|
||||
```
|
||||
conda activate autogptq
|
||||
```
|
||||
|
||||
The conda version older than 4.4
|
||||
|
||||
```
|
||||
source activate autogptq
|
||||
```
|
||||
|
||||
## Install the packages to your environment
|
||||
|
||||
Sometimes you need to install the packages from the conda-forge channel
|
||||
|
||||
By using `conda`
|
||||
```
|
||||
conda install <your-package-name>
|
||||
|
||||
conda install -c conda-forge <your package-name>
|
||||
```
|
||||
|
||||
Or by using `pip`
|
||||
```
|
||||
pip install <your-package-name>
|
||||
```
|
5
backend/python/autogptq/Makefile
Normal file
5
backend/python/autogptq/Makefile
Normal file
|
@ -0,0 +1,5 @@
|
|||
.PONY: autogptq
|
||||
autogptq:
|
||||
@echo "Creating virtual environment..."
|
||||
@conda env create --name autogptq --file autogptq.yml
|
||||
@echo "Virtual environment created."
|
5
backend/python/autogptq/README.md
Normal file
5
backend/python/autogptq/README.md
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Creating a separate environment for the autogptq project
|
||||
|
||||
```
|
||||
make autogptq
|
||||
```
|
112
backend/python/autogptq/autogptq.py
Executable file
112
backend/python/autogptq/autogptq.py
Executable file
|
@ -0,0 +1,112 @@
|
|||
#!/usr/bin/env python3
|
||||
from concurrent import futures
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
import time
|
||||
|
||||
import grpc
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
from auto_gptq import AutoGPTQForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
from transformers import TextGenerationPipeline
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
def Health(self, request, context):
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
def LoadModel(self, request, context):
|
||||
try:
|
||||
device = "cuda:0"
|
||||
if request.Device != "":
|
||||
device = request.Device
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(request.Model, use_fast=request.UseFastTokenizer)
|
||||
|
||||
model = AutoGPTQForCausalLM.from_quantized(request.Model,
|
||||
model_basename=request.ModelBaseName,
|
||||
use_safetensors=True,
|
||||
trust_remote_code=True,
|
||||
device=device,
|
||||
use_triton=request.UseTriton,
|
||||
quantize_config=None)
|
||||
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def Predict(self, request, context):
|
||||
penalty = 1.0
|
||||
if request.Penalty != 0.0:
|
||||
penalty = request.Penalty
|
||||
tokens = 512
|
||||
if request.Tokens != 0:
|
||||
tokens = request.Tokens
|
||||
top_p = 0.95
|
||||
if request.TopP != 0.0:
|
||||
top_p = request.TopP
|
||||
|
||||
# Implement Predict RPC
|
||||
pipeline = TextGenerationPipeline(
|
||||
model=self.model,
|
||||
tokenizer=self.tokenizer,
|
||||
max_new_tokens=tokens,
|
||||
temperature=request.Temperature,
|
||||
top_p=top_p,
|
||||
repetition_penalty=penalty,
|
||||
)
|
||||
t = pipeline(request.Prompt)[0]["generated_text"]
|
||||
# Remove prompt from response if present
|
||||
if request.Prompt in t:
|
||||
t = t.replace(request.Prompt, "")
|
||||
|
||||
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
# Implement PredictStream RPC
|
||||
#for reply in some_data_generator():
|
||||
# yield reply
|
||||
# Not implemented yet
|
||||
return self.Predict(request, context)
|
||||
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
86
backend/python/autogptq/autogptq.yml
Normal file
86
backend/python/autogptq/autogptq.yml
Normal file
|
@ -0,0 +1,86 @@
|
|||
name: autogptq
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1=main
|
||||
- _openmp_mutex=5.1=1_gnu
|
||||
- bzip2=1.0.8=h7b6447c_0
|
||||
- ca-certificates=2023.08.22=h06a4308_0
|
||||
- ld_impl_linux-64=2.38=h1181459_1
|
||||
- libffi=3.4.4=h6a678d5_0
|
||||
- libgcc-ng=11.2.0=h1234567_1
|
||||
- libgomp=11.2.0=h1234567_1
|
||||
- libstdcxx-ng=11.2.0=h1234567_1
|
||||
- libuuid=1.41.5=h5eee18b_0
|
||||
- ncurses=6.4=h6a678d5_0
|
||||
- openssl=3.0.11=h7f8727e_2
|
||||
- pip=23.2.1=py311h06a4308_0
|
||||
- python=3.11.5=h955ad1f_0
|
||||
- readline=8.2=h5eee18b_0
|
||||
- setuptools=68.0.0=py311h06a4308_0
|
||||
- sqlite=3.41.2=h5eee18b_0
|
||||
- tk=8.6.12=h1ccaba5_0
|
||||
- wheel=0.41.2=py311h06a4308_0
|
||||
- xz=5.4.2=h5eee18b_0
|
||||
- zlib=1.2.13=h5eee18b_0
|
||||
- pip:
|
||||
- accelerate==0.23.0
|
||||
- aiohttp==3.8.5
|
||||
- aiosignal==1.3.1
|
||||
- async-timeout==4.0.3
|
||||
- attrs==23.1.0
|
||||
- auto-gptq==0.4.2
|
||||
- certifi==2023.7.22
|
||||
- charset-normalizer==3.3.0
|
||||
- datasets==2.14.5
|
||||
- dill==0.3.7
|
||||
- filelock==3.12.4
|
||||
- frozenlist==1.4.0
|
||||
- fsspec==2023.6.0
|
||||
- grpcio==1.59.0
|
||||
- huggingface-hub==0.16.4
|
||||
- idna==3.4
|
||||
- jinja2==3.1.2
|
||||
- markupsafe==2.1.3
|
||||
- mpmath==1.3.0
|
||||
- multidict==6.0.4
|
||||
- multiprocess==0.70.15
|
||||
- networkx==3.1
|
||||
- numpy==1.26.0
|
||||
- nvidia-cublas-cu12==12.1.3.1
|
||||
- nvidia-cuda-cupti-cu12==12.1.105
|
||||
- nvidia-cuda-nvrtc-cu12==12.1.105
|
||||
- nvidia-cuda-runtime-cu12==12.1.105
|
||||
- nvidia-cudnn-cu12==8.9.2.26
|
||||
- nvidia-cufft-cu12==11.0.2.54
|
||||
- nvidia-curand-cu12==10.3.2.106
|
||||
- nvidia-cusolver-cu12==11.4.5.107
|
||||
- nvidia-cusparse-cu12==12.1.0.106
|
||||
- nvidia-nccl-cu12==2.18.1
|
||||
- nvidia-nvjitlink-cu12==12.2.140
|
||||
- nvidia-nvtx-cu12==12.1.105
|
||||
- packaging==23.2
|
||||
- pandas==2.1.1
|
||||
- peft==0.5.0
|
||||
- protobuf==4.24.4
|
||||
- psutil==5.9.5
|
||||
- pyarrow==13.0.0
|
||||
- python-dateutil==2.8.2
|
||||
- pytz==2023.3.post1
|
||||
- pyyaml==6.0.1
|
||||
- regex==2023.10.3
|
||||
- requests==2.31.0
|
||||
- rouge==1.0.1
|
||||
- safetensors==0.3.3
|
||||
- six==1.16.0
|
||||
- sympy==1.12
|
||||
- tokenizers==0.14.0
|
||||
- torch==2.1.0
|
||||
- tqdm==4.66.1
|
||||
- transformers==4.34.0
|
||||
- triton==2.1.0
|
||||
- typing-extensions==4.8.0
|
||||
- tzdata==2023.3
|
||||
- urllib3==2.0.6
|
||||
- xxhash==3.4.1
|
||||
- yarl==1.9.2
|
61
backend/python/autogptq/backend_pb2.py
Normal file
61
backend/python/autogptq/backend_pb2.py
Normal file
File diff suppressed because one or more lines are too long
363
backend/python/autogptq/backend_pb2_grpc.py
Normal file
363
backend/python/autogptq/backend_pb2_grpc.py
Normal file
|
@ -0,0 +1,363 @@
|
|||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
14
backend/python/autogptq/run.sh
Executable file
14
backend/python/autogptq/run.sh
Executable file
|
@ -0,0 +1,14 @@
|
|||
#!/bin/bash
|
||||
|
||||
##
|
||||
## A bash script wrapper that runs the autogptq server with conda
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate autogptq
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python $DIR/autogptq.py $@
|
5
backend/python/bark/Makefile
Normal file
5
backend/python/bark/Makefile
Normal file
|
@ -0,0 +1,5 @@
|
|||
.PONY: ttsbark
|
||||
ttsbark:
|
||||
@echo "Creating virtual environment..."
|
||||
@conda env create --name ttsbark --file ttsbark.yml
|
||||
@echo "Virtual environment created."
|
16
backend/python/bark/README.md
Normal file
16
backend/python/bark/README.md
Normal file
|
@ -0,0 +1,16 @@
|
|||
# Creating a separate environment for ttsbark project
|
||||
|
||||
```
|
||||
make ttsbark
|
||||
```
|
||||
|
||||
# Testing the gRPC server
|
||||
|
||||
```
|
||||
<The path of your python interpreter> -m unittest test_ttsbark.py
|
||||
```
|
||||
|
||||
For example
|
||||
```
|
||||
/opt/conda/envs/bark/bin/python -m unittest extra/grpc/bark/test_ttsbark.py
|
||||
``````
|
61
backend/python/bark/backend_pb2.py
Normal file
61
backend/python/bark/backend_pb2.py
Normal file
File diff suppressed because one or more lines are too long
363
backend/python/bark/backend_pb2_grpc.py
Normal file
363
backend/python/bark/backend_pb2_grpc.py
Normal file
|
@ -0,0 +1,363 @@
|
|||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
14
backend/python/bark/run.sh
Executable file
14
backend/python/bark/run.sh
Executable file
|
@ -0,0 +1,14 @@
|
|||
#!/bin/bash
|
||||
|
||||
##
|
||||
## A bash script wrapper that runs the ttsbark server with conda
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate ttsbark
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python $DIR/ttsbark.py $@
|
32
backend/python/bark/test_ttsbark.py
Normal file
32
backend/python/bark/test_ttsbark.py
Normal file
|
@ -0,0 +1,32 @@
|
|||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
class TestBackendServicer(unittest.TestCase):
|
||||
"""
|
||||
TestBackendServicer is the class that tests the gRPC service
|
||||
"""
|
||||
def setUp(self):
|
||||
self.service = subprocess.Popen(["python3", "ttsbark.py", "--addr", "localhost:50051"])
|
||||
|
||||
def tearDown(self) -> None:
|
||||
self.service.terminate()
|
||||
self.service.wait()
|
||||
|
||||
def test_server_startup(self):
|
||||
time.sleep(2)
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.Health(backend_pb2.HealthMessage())
|
||||
self.assertEqual(response.message, b'OK')
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Server failed to start")
|
||||
finally:
|
||||
self.tearDown()
|
94
backend/python/bark/ttsbark.py
Normal file
94
backend/python/bark/ttsbark.py
Normal file
|
@ -0,0 +1,94 @@
|
|||
"""
|
||||
This is the extra gRPC server of LocalAI
|
||||
"""
|
||||
|
||||
#!/usr/bin/env python3
|
||||
from concurrent import futures
|
||||
import time
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
from scipy.io.wavfile import write as write_wav
|
||||
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
from bark import SAMPLE_RATE, generate_audio, preload_models
|
||||
|
||||
import grpc
|
||||
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
BackendServicer is the class that implements the gRPC service
|
||||
"""
|
||||
def Health(self, request, context):
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
def LoadModel(self, request, context):
|
||||
model_name = request.Model
|
||||
try:
|
||||
print("Preparing models, please wait", file=sys.stderr)
|
||||
# download and load all models
|
||||
preload_models()
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
# Implement your logic here for the LoadModel service
|
||||
# Replace this with your desired response
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def TTS(self, request, context):
|
||||
model = request.model
|
||||
print(request, file=sys.stderr)
|
||||
try:
|
||||
audio_array = None
|
||||
if model != "":
|
||||
audio_array = generate_audio(request.text, history_prompt=model)
|
||||
else:
|
||||
audio_array = generate_audio(request.text)
|
||||
print("saving to", request.dst, file=sys.stderr)
|
||||
# save audio to disk
|
||||
write_wav(request.dst, SAMPLE_RATE, audio_array)
|
||||
print("saved to", request.dst, file=sys.stderr)
|
||||
print("tts for", file=sys.stderr)
|
||||
print(request, file=sys.stderr)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
96
backend/python/bark/ttsbark.yml
Normal file
96
backend/python/bark/ttsbark.yml
Normal file
|
@ -0,0 +1,96 @@
|
|||
name: bark
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1=main
|
||||
- _openmp_mutex=5.1=1_gnu
|
||||
- bzip2=1.0.8=h7b6447c_0
|
||||
- ca-certificates=2023.08.22=h06a4308_0
|
||||
- ld_impl_linux-64=2.38=h1181459_1
|
||||
- libffi=3.4.4=h6a678d5_0
|
||||
- libgcc-ng=11.2.0=h1234567_1
|
||||
- libgomp=11.2.0=h1234567_1
|
||||
- libstdcxx-ng=11.2.0=h1234567_1
|
||||
- libuuid=1.41.5=h5eee18b_0
|
||||
- ncurses=6.4=h6a678d5_0
|
||||
- openssl=3.0.11=h7f8727e_2
|
||||
- pip=23.2.1=py311h06a4308_0
|
||||
- python=3.11.5=h955ad1f_0
|
||||
- readline=8.2=h5eee18b_0
|
||||
- setuptools=68.0.0=py311h06a4308_0
|
||||
- sqlite=3.41.2=h5eee18b_0
|
||||
- tk=8.6.12=h1ccaba5_0
|
||||
- wheel=0.41.2=py311h06a4308_0
|
||||
- xz=5.4.2=h5eee18b_0
|
||||
- zlib=1.2.13=h5eee18b_0
|
||||
- pip:
|
||||
- accelerate==0.23.0
|
||||
- aiohttp==3.8.5
|
||||
- aiosignal==1.3.1
|
||||
- async-timeout==4.0.3
|
||||
- attrs==23.1.0
|
||||
- bark==0.1.5
|
||||
- boto3==1.28.61
|
||||
- botocore==1.31.61
|
||||
- certifi==2023.7.22
|
||||
- charset-normalizer==3.3.0
|
||||
- datasets==2.14.5
|
||||
- dill==0.3.7
|
||||
- einops==0.7.0
|
||||
- encodec==0.1.1
|
||||
- filelock==3.12.4
|
||||
- frozenlist==1.4.0
|
||||
- fsspec==2023.6.0
|
||||
- funcy==2.0
|
||||
- grpcio==1.59.0
|
||||
- huggingface-hub==0.16.4
|
||||
- idna==3.4
|
||||
- jinja2==3.1.2
|
||||
- jmespath==1.0.1
|
||||
- markupsafe==2.1.3
|
||||
- mpmath==1.3.0
|
||||
- multidict==6.0.4
|
||||
- multiprocess==0.70.15
|
||||
- networkx==3.1
|
||||
- numpy==1.26.0
|
||||
- nvidia-cublas-cu12==12.1.3.1
|
||||
- nvidia-cuda-cupti-cu12==12.1.105
|
||||
- nvidia-cuda-nvrtc-cu12==12.1.105
|
||||
- nvidia-cuda-runtime-cu12==12.1.105
|
||||
- nvidia-cudnn-cu12==8.9.2.26
|
||||
- nvidia-cufft-cu12==11.0.2.54
|
||||
- nvidia-curand-cu12==10.3.2.106
|
||||
- nvidia-cusolver-cu12==11.4.5.107
|
||||
- nvidia-cusparse-cu12==12.1.0.106
|
||||
- nvidia-nccl-cu12==2.18.1
|
||||
- nvidia-nvjitlink-cu12==12.2.140
|
||||
- nvidia-nvtx-cu12==12.1.105
|
||||
- packaging==23.2
|
||||
- pandas==2.1.1
|
||||
- peft==0.5.0
|
||||
- protobuf==4.24.4
|
||||
- psutil==5.9.5
|
||||
- pyarrow==13.0.0
|
||||
- python-dateutil==2.8.2
|
||||
- pytz==2023.3.post1
|
||||
- pyyaml==6.0.1
|
||||
- regex==2023.10.3
|
||||
- requests==2.31.0
|
||||
- rouge==1.0.1
|
||||
- s3transfer==0.7.0
|
||||
- safetensors==0.3.3
|
||||
- scipy==1.11.3
|
||||
- six==1.16.0
|
||||
- sympy==1.12
|
||||
- tokenizers==0.14.0
|
||||
- torch==2.1.0
|
||||
- torchaudio==2.1.0
|
||||
- tqdm==4.66.1
|
||||
- transformers==4.34.0
|
||||
- triton==2.1.0
|
||||
- typing-extensions==4.8.0
|
||||
- tzdata==2023.3
|
||||
- urllib3==1.26.17
|
||||
- xxhash==3.4.1
|
||||
- yarl==1.9.2
|
||||
prefix: /opt/conda/envs/bark
|
11
backend/python/diffusers/Makefile
Normal file
11
backend/python/diffusers/Makefile
Normal file
|
@ -0,0 +1,11 @@
|
|||
.PONY: diffusers
|
||||
diffusers:
|
||||
@echo "Creating virtual environment..."
|
||||
@conda env create --name diffusers --file diffusers.yml
|
||||
@echo "Virtual environment created."
|
||||
|
||||
.PONY: run
|
||||
run:
|
||||
@echo "Running diffusers..."
|
||||
bash run.sh
|
||||
@echo "Diffusers run."
|
5
backend/python/diffusers/README.md
Normal file
5
backend/python/diffusers/README.md
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Creating a separate environment for the diffusers project
|
||||
|
||||
```
|
||||
make diffusers
|
||||
```
|
386
backend/python/diffusers/backend_diffusers.py
Executable file
386
backend/python/diffusers/backend_diffusers.py
Executable file
|
@ -0,0 +1,386 @@
|
|||
#!/usr/bin/env python3
|
||||
from concurrent import futures
|
||||
|
||||
import argparse
|
||||
from collections import defaultdict
|
||||
from enum import Enum
|
||||
import signal
|
||||
import sys
|
||||
import time
|
||||
import os
|
||||
|
||||
from PIL import Image
|
||||
import torch
|
||||
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
from diffusers import StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler
|
||||
from diffusers import StableDiffusionImg2ImgPipeline
|
||||
from diffusers.pipelines.stable_diffusion import safety_checker
|
||||
|
||||
from compel import Compel
|
||||
|
||||
from transformers import CLIPTextModel
|
||||
from safetensors.torch import load_file
|
||||
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
COMPEL=os.environ.get("COMPEL", "1") == "1"
|
||||
CLIPSKIP=os.environ.get("CLIPSKIP", "1") == "1"
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# https://github.com/CompVis/stable-diffusion/issues/239#issuecomment-1627615287
|
||||
def sc(self, clip_input, images) : return images, [False for i in images]
|
||||
# edit the StableDiffusionSafetyChecker class so that, when called, it just returns the images and an array of True values
|
||||
safety_checker.StableDiffusionSafetyChecker.forward = sc
|
||||
|
||||
from diffusers.schedulers import (
|
||||
DDIMScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
DPMSolverSinglestepScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
HeunDiscreteScheduler,
|
||||
KDPM2AncestralDiscreteScheduler,
|
||||
KDPM2DiscreteScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
UniPCMultistepScheduler,
|
||||
)
|
||||
# The scheduler list mapping was taken from here: https://github.com/neggles/animatediff-cli/blob/6f336f5f4b5e38e85d7f06f1744ef42d0a45f2a7/src/animatediff/schedulers.py#L39
|
||||
# Credits to https://github.com/neggles
|
||||
# See https://github.com/huggingface/diffusers/issues/4167 for more details on sched mapping from A1111
|
||||
class DiffusionScheduler(str, Enum):
|
||||
ddim = "ddim" # DDIM
|
||||
pndm = "pndm" # PNDM
|
||||
heun = "heun" # Heun
|
||||
unipc = "unipc" # UniPC
|
||||
euler = "euler" # Euler
|
||||
euler_a = "euler_a" # Euler a
|
||||
|
||||
lms = "lms" # LMS
|
||||
k_lms = "k_lms" # LMS Karras
|
||||
|
||||
dpm_2 = "dpm_2" # DPM2
|
||||
k_dpm_2 = "k_dpm_2" # DPM2 Karras
|
||||
|
||||
dpm_2_a = "dpm_2_a" # DPM2 a
|
||||
k_dpm_2_a = "k_dpm_2_a" # DPM2 a Karras
|
||||
|
||||
dpmpp_2m = "dpmpp_2m" # DPM++ 2M
|
||||
k_dpmpp_2m = "k_dpmpp_2m" # DPM++ 2M Karras
|
||||
|
||||
dpmpp_sde = "dpmpp_sde" # DPM++ SDE
|
||||
k_dpmpp_sde = "k_dpmpp_sde" # DPM++ SDE Karras
|
||||
|
||||
dpmpp_2m_sde = "dpmpp_2m_sde" # DPM++ 2M SDE
|
||||
k_dpmpp_2m_sde = "k_dpmpp_2m_sde" # DPM++ 2M SDE Karras
|
||||
|
||||
|
||||
def get_scheduler(name: str, config: dict = {}):
|
||||
is_karras = name.startswith("k_")
|
||||
if is_karras:
|
||||
# strip the k_ prefix and add the karras sigma flag to config
|
||||
name = name.lstrip("k_")
|
||||
config["use_karras_sigmas"] = True
|
||||
|
||||
if name == DiffusionScheduler.ddim:
|
||||
sched_class = DDIMScheduler
|
||||
elif name == DiffusionScheduler.pndm:
|
||||
sched_class = PNDMScheduler
|
||||
elif name == DiffusionScheduler.heun:
|
||||
sched_class = HeunDiscreteScheduler
|
||||
elif name == DiffusionScheduler.unipc:
|
||||
sched_class = UniPCMultistepScheduler
|
||||
elif name == DiffusionScheduler.euler:
|
||||
sched_class = EulerDiscreteScheduler
|
||||
elif name == DiffusionScheduler.euler_a:
|
||||
sched_class = EulerAncestralDiscreteScheduler
|
||||
elif name == DiffusionScheduler.lms:
|
||||
sched_class = LMSDiscreteScheduler
|
||||
elif name == DiffusionScheduler.dpm_2:
|
||||
# Equivalent to DPM2 in K-Diffusion
|
||||
sched_class = KDPM2DiscreteScheduler
|
||||
elif name == DiffusionScheduler.dpm_2_a:
|
||||
# Equivalent to `DPM2 a`` in K-Diffusion
|
||||
sched_class = KDPM2AncestralDiscreteScheduler
|
||||
elif name == DiffusionScheduler.dpmpp_2m:
|
||||
# Equivalent to `DPM++ 2M` in K-Diffusion
|
||||
sched_class = DPMSolverMultistepScheduler
|
||||
config["algorithm_type"] = "dpmsolver++"
|
||||
config["solver_order"] = 2
|
||||
elif name == DiffusionScheduler.dpmpp_sde:
|
||||
# Equivalent to `DPM++ SDE` in K-Diffusion
|
||||
sched_class = DPMSolverSinglestepScheduler
|
||||
elif name == DiffusionScheduler.dpmpp_2m_sde:
|
||||
# Equivalent to `DPM++ 2M SDE` in K-Diffusion
|
||||
sched_class = DPMSolverMultistepScheduler
|
||||
config["algorithm_type"] = "sde-dpmsolver++"
|
||||
else:
|
||||
raise ValueError(f"Invalid scheduler '{'k_' if is_karras else ''}{name}'")
|
||||
|
||||
return sched_class.from_config(config)
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
def Health(self, request, context):
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
def LoadModel(self, request, context):
|
||||
try:
|
||||
print(f"Loading model {request.Model}...", file=sys.stderr)
|
||||
print(f"Request {request}", file=sys.stderr)
|
||||
torchType = torch.float32
|
||||
if request.F16Memory:
|
||||
torchType = torch.float16
|
||||
|
||||
local = False
|
||||
modelFile = request.Model
|
||||
|
||||
cfg_scale = 7
|
||||
if request.CFGScale != 0:
|
||||
cfg_scale = request.CFGScale
|
||||
|
||||
clipmodel = "runwayml/stable-diffusion-v1-5"
|
||||
if request.CLIPModel != "":
|
||||
clipmodel = request.CLIPModel
|
||||
clipsubfolder = "text_encoder"
|
||||
if request.CLIPSubfolder != "":
|
||||
clipsubfolder = request.CLIPSubfolder
|
||||
|
||||
# Check if ModelFile exists
|
||||
if request.ModelFile != "":
|
||||
if os.path.exists(request.ModelFile):
|
||||
local = True
|
||||
modelFile = request.ModelFile
|
||||
|
||||
fromSingleFile = request.Model.startswith("http") or request.Model.startswith("/") or local
|
||||
|
||||
if request.IMG2IMG and request.PipelineType == "":
|
||||
request.PipelineType == "StableDiffusionImg2ImgPipeline"
|
||||
|
||||
if request.PipelineType == "":
|
||||
request.PipelineType == "StableDiffusionPipeline"
|
||||
|
||||
## img2img
|
||||
if request.PipelineType == "StableDiffusionImg2ImgPipeline":
|
||||
if fromSingleFile:
|
||||
self.pipe = StableDiffusionImg2ImgPipeline.from_single_file(modelFile,
|
||||
torch_dtype=torchType,
|
||||
guidance_scale=cfg_scale)
|
||||
else:
|
||||
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(request.Model,
|
||||
torch_dtype=torchType,
|
||||
guidance_scale=cfg_scale)
|
||||
|
||||
if request.PipelineType == "StableDiffusionDepth2ImgPipeline":
|
||||
self.pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(request.Model,
|
||||
torch_dtype=torchType,
|
||||
guidance_scale=cfg_scale)
|
||||
## text2img
|
||||
if request.PipelineType == "StableDiffusionPipeline":
|
||||
if fromSingleFile:
|
||||
self.pipe = StableDiffusionPipeline.from_single_file(modelFile,
|
||||
torch_dtype=torchType,
|
||||
guidance_scale=cfg_scale)
|
||||
else:
|
||||
self.pipe = StableDiffusionPipeline.from_pretrained(request.Model,
|
||||
torch_dtype=torchType,
|
||||
guidance_scale=cfg_scale)
|
||||
|
||||
if request.PipelineType == "DiffusionPipeline":
|
||||
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
|
||||
torch_dtype=torchType,
|
||||
guidance_scale=cfg_scale)
|
||||
|
||||
if request.PipelineType == "StableDiffusionXLPipeline":
|
||||
if fromSingleFile:
|
||||
self.pipe = StableDiffusionXLPipeline.from_single_file(modelFile,
|
||||
torch_dtype=torchType, use_safetensors=True,
|
||||
guidance_scale=cfg_scale)
|
||||
else:
|
||||
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
||||
request.Model,
|
||||
torch_dtype=torchType,
|
||||
use_safetensors=True,
|
||||
# variant="fp16"
|
||||
guidance_scale=cfg_scale)
|
||||
# https://github.com/huggingface/diffusers/issues/4446
|
||||
# do not use text_encoder in the constructor since then
|
||||
# https://github.com/huggingface/diffusers/issues/3212#issuecomment-1521841481
|
||||
if CLIPSKIP and request.CLIPSkip != 0:
|
||||
text_encoder = CLIPTextModel.from_pretrained(clipmodel, num_hidden_layers=request.CLIPSkip, subfolder=clipsubfolder, torch_dtype=torchType)
|
||||
self.pipe.text_encoder=text_encoder
|
||||
# torch_dtype needs to be customized. float16 for GPU, float32 for CPU
|
||||
# TODO: this needs to be customized
|
||||
if request.SchedulerType != "":
|
||||
self.pipe.scheduler = get_scheduler(request.SchedulerType, self.pipe.scheduler.config)
|
||||
self.compel = Compel(tokenizer=self.pipe.tokenizer, text_encoder=self.pipe.text_encoder)
|
||||
if request.CUDA:
|
||||
self.pipe.to('cuda')
|
||||
# Assume directory from request.ModelFile.
|
||||
# Only if request.LoraAdapter it's not an absolute path
|
||||
if request.LoraAdapter and request.ModelFile != "" and not os.path.isabs(request.LoraAdapter) and request.LoraAdapter:
|
||||
# get base path of modelFile
|
||||
modelFileBase = os.path.dirname(request.ModelFile)
|
||||
# modify LoraAdapter to be relative to modelFileBase
|
||||
request.LoraAdapter = os.path.join(modelFileBase, request.LoraAdapter)
|
||||
device = "cpu" if not request.CUDA else "cuda"
|
||||
self.device = device
|
||||
if request.LoraAdapter:
|
||||
# Check if its a local file and not a directory ( we load lora differently for a safetensor file )
|
||||
if os.path.exists(request.LoraAdapter) and not os.path.isdir(request.LoraAdapter):
|
||||
self.load_lora_weights(request.LoraAdapter, 1, device, torchType)
|
||||
else:
|
||||
self.pipe.unet.load_attn_procs(request.LoraAdapter)
|
||||
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
# Implement your logic here for the LoadModel service
|
||||
# Replace this with your desired response
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
# https://github.com/huggingface/diffusers/issues/3064
|
||||
def load_lora_weights(self, checkpoint_path, multiplier, device, dtype):
|
||||
LORA_PREFIX_UNET = "lora_unet"
|
||||
LORA_PREFIX_TEXT_ENCODER = "lora_te"
|
||||
# load LoRA weight from .safetensors
|
||||
state_dict = load_file(checkpoint_path, device=device)
|
||||
|
||||
updates = defaultdict(dict)
|
||||
for key, value in state_dict.items():
|
||||
# it is suggested to print out the key, it usually will be something like below
|
||||
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
|
||||
|
||||
layer, elem = key.split('.', 1)
|
||||
updates[layer][elem] = value
|
||||
|
||||
# directly update weight in diffusers model
|
||||
for layer, elems in updates.items():
|
||||
|
||||
if "text" in layer:
|
||||
layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
|
||||
curr_layer = self.pipe.text_encoder
|
||||
else:
|
||||
layer_infos = layer.split(LORA_PREFIX_UNET + "_")[-1].split("_")
|
||||
curr_layer = self.pipe.unet
|
||||
|
||||
# find the target layer
|
||||
temp_name = layer_infos.pop(0)
|
||||
while len(layer_infos) > -1:
|
||||
try:
|
||||
curr_layer = curr_layer.__getattr__(temp_name)
|
||||
if len(layer_infos) > 0:
|
||||
temp_name = layer_infos.pop(0)
|
||||
elif len(layer_infos) == 0:
|
||||
break
|
||||
except Exception:
|
||||
if len(temp_name) > 0:
|
||||
temp_name += "_" + layer_infos.pop(0)
|
||||
else:
|
||||
temp_name = layer_infos.pop(0)
|
||||
|
||||
# get elements for this layer
|
||||
weight_up = elems['lora_up.weight'].to(dtype)
|
||||
weight_down = elems['lora_down.weight'].to(dtype)
|
||||
alpha = elems['alpha'] if 'alpha' in elems else None
|
||||
if alpha:
|
||||
alpha = alpha.item() / weight_up.shape[1]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
# update weight
|
||||
if len(weight_up.shape) == 4:
|
||||
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up.squeeze(3).squeeze(2), weight_down.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
||||
else:
|
||||
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up, weight_down)
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
|
||||
prompt = request.positive_prompt
|
||||
|
||||
# create a dictionary of values for the parameters
|
||||
options = {
|
||||
"negative_prompt": request.negative_prompt,
|
||||
"width": request.width,
|
||||
"height": request.height,
|
||||
"num_inference_steps": request.step,
|
||||
}
|
||||
|
||||
if request.src != "":
|
||||
image = Image.open(request.src)
|
||||
options["image"] = image
|
||||
|
||||
# Get the keys that we will build the args for our pipe for
|
||||
keys = options.keys()
|
||||
|
||||
if request.EnableParameters != "":
|
||||
keys = request.EnableParameters.split(",")
|
||||
|
||||
if request.EnableParameters == "none":
|
||||
keys = []
|
||||
|
||||
# create a dictionary of parameters by using the keys from EnableParameters and the values from defaults
|
||||
kwargs = {key: options[key] for key in keys}
|
||||
|
||||
# Set seed
|
||||
if request.seed > 0:
|
||||
kwargs["generator"] = torch.Generator(device=self.device).manual_seed(
|
||||
request.seed
|
||||
)
|
||||
|
||||
image = {}
|
||||
if COMPEL:
|
||||
conditioning = self.compel.build_conditioning_tensor(prompt)
|
||||
kwargs["prompt_embeds"]= conditioning
|
||||
# pass the kwargs dictionary to the self.pipe method
|
||||
image = self.pipe(
|
||||
**kwargs
|
||||
).images[0]
|
||||
else:
|
||||
# pass the kwargs dictionary to the self.pipe method
|
||||
image = self.pipe(
|
||||
prompt,
|
||||
**kwargs
|
||||
).images[0]
|
||||
|
||||
# save the result
|
||||
image.save(request.dst)
|
||||
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
61
backend/python/diffusers/backend_pb2.py
Normal file
61
backend/python/diffusers/backend_pb2.py
Normal file
File diff suppressed because one or more lines are too long
363
backend/python/diffusers/backend_pb2_grpc.py
Normal file
363
backend/python/diffusers/backend_pb2_grpc.py
Normal file
|
@ -0,0 +1,363 @@
|
|||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
74
backend/python/diffusers/diffusers.yml
Normal file
74
backend/python/diffusers/diffusers.yml
Normal file
|
@ -0,0 +1,74 @@
|
|||
name: diffusers
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1=main
|
||||
- _openmp_mutex=5.1=1_gnu
|
||||
- bzip2=1.0.8=h7b6447c_0
|
||||
- ca-certificates=2023.08.22=h06a4308_0
|
||||
- ld_impl_linux-64=2.38=h1181459_1
|
||||
- libffi=3.4.4=h6a678d5_0
|
||||
- libgcc-ng=11.2.0=h1234567_1
|
||||
- libgomp=11.2.0=h1234567_1
|
||||
- libstdcxx-ng=11.2.0=h1234567_1
|
||||
- libuuid=1.41.5=h5eee18b_0
|
||||
- ncurses=6.4=h6a678d5_0
|
||||
- openssl=3.0.11=h7f8727e_2
|
||||
- pip=23.2.1=py311h06a4308_0
|
||||
- python=3.11.5=h955ad1f_0
|
||||
- readline=8.2=h5eee18b_0
|
||||
- setuptools=68.0.0=py311h06a4308_0
|
||||
- sqlite=3.41.2=h5eee18b_0
|
||||
- tk=8.6.12=h1ccaba5_0
|
||||
- tzdata=2023c=h04d1e81_0
|
||||
- wheel=0.41.2=py311h06a4308_0
|
||||
- xz=5.4.2=h5eee18b_0
|
||||
- zlib=1.2.13=h5eee18b_0
|
||||
- pip:
|
||||
- accelerate==0.23.0
|
||||
- certifi==2023.7.22
|
||||
- charset-normalizer==3.3.0
|
||||
- compel==2.0.2
|
||||
- diffusers==0.21.4
|
||||
- filelock==3.12.4
|
||||
- fsspec==2023.9.2
|
||||
- grpcio==1.59.0
|
||||
- huggingface-hub==0.17.3
|
||||
- idna==3.4
|
||||
- importlib-metadata==6.8.0
|
||||
- jinja2==3.1.2
|
||||
- markupsafe==2.1.3
|
||||
- mpmath==1.3.0
|
||||
- networkx==3.1
|
||||
- numpy==1.26.0
|
||||
- nvidia-cublas-cu12==12.1.3.1
|
||||
- nvidia-cuda-cupti-cu12==12.1.105
|
||||
- nvidia-cuda-nvrtc-cu12==12.1.105
|
||||
- nvidia-cuda-runtime-cu12==12.1.105
|
||||
- nvidia-cudnn-cu12==8.9.2.26
|
||||
- nvidia-cufft-cu12==11.0.2.54
|
||||
- nvidia-curand-cu12==10.3.2.106
|
||||
- nvidia-cusolver-cu12==11.4.5.107
|
||||
- nvidia-cusparse-cu12==12.1.0.106
|
||||
- nvidia-nccl-cu12==2.18.1
|
||||
- nvidia-nvjitlink-cu12==12.2.140
|
||||
- nvidia-nvtx-cu12==12.1.105
|
||||
- packaging==23.2
|
||||
- pillow==10.0.1
|
||||
- protobuf==4.24.4
|
||||
- psutil==5.9.5
|
||||
- pyparsing==3.1.1
|
||||
- pyyaml==6.0.1
|
||||
- regex==2023.10.3
|
||||
- requests==2.31.0
|
||||
- safetensors==0.4.0
|
||||
- sympy==1.12
|
||||
- tokenizers==0.14.1
|
||||
- torch==2.1.0
|
||||
- tqdm==4.66.1
|
||||
- transformers==4.34.0
|
||||
- triton==2.1.0
|
||||
- typing-extensions==4.8.0
|
||||
- urllib3==2.0.6
|
||||
- zipp==3.17.0
|
||||
prefix: /opt/conda/envs/diffusers
|
14
backend/python/diffusers/run.sh
Executable file
14
backend/python/diffusers/run.sh
Executable file
|
@ -0,0 +1,14 @@
|
|||
#!/bin/bash
|
||||
|
||||
##
|
||||
## A bash script wrapper that runs the diffusers server with conda
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate diffusers
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python $DIR/backend_diffusers.py $@
|
11
backend/python/exllama/Makefile
Normal file
11
backend/python/exllama/Makefile
Normal file
|
@ -0,0 +1,11 @@
|
|||
.PONY: exllama
|
||||
exllama:
|
||||
@echo "Creating virtual environment..."
|
||||
@conda env create --name exllama --file exllama.yml
|
||||
@echo "Virtual environment created."
|
||||
|
||||
.PONY: run
|
||||
run:
|
||||
@echo "Running exllama..."
|
||||
bash run.sh
|
||||
@echo "exllama run."
|
5
backend/python/exllama/README.md
Normal file
5
backend/python/exllama/README.md
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Creating a separate environment for the exllama project
|
||||
|
||||
```
|
||||
make exllama
|
||||
```
|
61
backend/python/exllama/backend_pb2.py
Normal file
61
backend/python/exllama/backend_pb2.py
Normal file
File diff suppressed because one or more lines are too long
363
backend/python/exllama/backend_pb2_grpc.py
Normal file
363
backend/python/exllama/backend_pb2_grpc.py
Normal file
|
@ -0,0 +1,363 @@
|
|||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
145
backend/python/exllama/exllama.py
Executable file
145
backend/python/exllama/exllama.py
Executable file
|
@ -0,0 +1,145 @@
|
|||
#!/usr/bin/env python3
|
||||
import grpc
|
||||
from concurrent import futures
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os, glob
|
||||
|
||||
from pathlib import Path
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import version as torch_version
|
||||
from exllama.generator import ExLlamaGenerator
|
||||
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
|
||||
from exllama.tokenizer import ExLlamaTokenizer
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
def generate(self,prompt, max_new_tokens):
|
||||
self.generator.end_beam_search()
|
||||
|
||||
# Tokenizing the input
|
||||
ids = self.generator.tokenizer.encode(prompt)
|
||||
|
||||
self.generator.gen_begin_reuse(ids)
|
||||
initial_len = self.generator.sequence[0].shape[0]
|
||||
has_leading_space = False
|
||||
decoded_text = ''
|
||||
for i in range(max_new_tokens):
|
||||
token = self.generator.gen_single_token()
|
||||
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'):
|
||||
has_leading_space = True
|
||||
|
||||
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
|
||||
if has_leading_space:
|
||||
decoded_text = ' ' + decoded_text
|
||||
|
||||
if token.item() == self.generator.tokenizer.eos_token_id:
|
||||
break
|
||||
return decoded_text
|
||||
def Health(self, request, context):
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
def LoadModel(self, request, context):
|
||||
try:
|
||||
# https://github.com/turboderp/exllama/blob/master/example_cfg.py
|
||||
model_directory = request.ModelFile
|
||||
|
||||
# Locate files we need within that directory
|
||||
tokenizer_path = os.path.join(model_directory, "tokenizer.model")
|
||||
model_config_path = os.path.join(model_directory, "config.json")
|
||||
st_pattern = os.path.join(model_directory, "*.safetensors")
|
||||
model_path = glob.glob(st_pattern)[0]
|
||||
|
||||
# Create config, model, tokenizer and generator
|
||||
|
||||
config = ExLlamaConfig(model_config_path) # create config from config.json
|
||||
config.model_path = model_path # supply path to model weights file
|
||||
|
||||
model = ExLlama(config) # create ExLlama instance and load the weights
|
||||
tokenizer = ExLlamaTokenizer(tokenizer_path) # create tokenizer from tokenizer model file
|
||||
|
||||
cache = ExLlamaCache(model, batch_size = 2) # create cache for inference
|
||||
generator = ExLlamaGenerator(model, tokenizer, cache) # create generator
|
||||
|
||||
self.generator= generator
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
self.cache = cache
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def Predict(self, request, context):
|
||||
penalty = 1.15
|
||||
if request.Penalty != 0.0:
|
||||
penalty = request.Penalty
|
||||
self.generator.settings.token_repetition_penalty_max = penalty
|
||||
self.generator.settings.temperature = request.Temperature
|
||||
self.generator.settings.top_k = request.TopK
|
||||
self.generator.settings.top_p = request.TopP
|
||||
|
||||
tokens = 512
|
||||
if request.Tokens != 0:
|
||||
tokens = request.Tokens
|
||||
|
||||
if self.cache.batch_size == 1:
|
||||
del self.cache
|
||||
self.cache = ExLlamaCache(self.model, batch_size=2)
|
||||
self.generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache)
|
||||
|
||||
t = self.generate(request.Prompt, tokens)
|
||||
|
||||
# Remove prompt from response if present
|
||||
if request.Prompt in t:
|
||||
t = t.replace(request.Prompt, "")
|
||||
|
||||
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
# Implement PredictStream RPC
|
||||
#for reply in some_data_generator():
|
||||
# yield reply
|
||||
# Not implemented yet
|
||||
return self.Predict(request, context)
|
||||
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
55
backend/python/exllama/exllama.yml
Normal file
55
backend/python/exllama/exllama.yml
Normal file
|
@ -0,0 +1,55 @@
|
|||
name: exllama
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1=main
|
||||
- _openmp_mutex=5.1=1_gnu
|
||||
- bzip2=1.0.8=h7b6447c_0
|
||||
- ca-certificates=2023.08.22=h06a4308_0
|
||||
- ld_impl_linux-64=2.38=h1181459_1
|
||||
- libffi=3.4.4=h6a678d5_0
|
||||
- libgcc-ng=11.2.0=h1234567_1
|
||||
- libgomp=11.2.0=h1234567_1
|
||||
- libstdcxx-ng=11.2.0=h1234567_1
|
||||
- libuuid=1.41.5=h5eee18b_0
|
||||
- ncurses=6.4=h6a678d5_0
|
||||
- openssl=3.0.11=h7f8727e_2
|
||||
- pip=23.2.1=py311h06a4308_0
|
||||
- python=3.11.5=h955ad1f_0
|
||||
- readline=8.2=h5eee18b_0
|
||||
- setuptools=68.0.0=py311h06a4308_0
|
||||
- sqlite=3.41.2=h5eee18b_0
|
||||
- tk=8.6.12=h1ccaba5_0
|
||||
- tzdata=2023c=h04d1e81_0
|
||||
- wheel=0.41.2=py311h06a4308_0
|
||||
- xz=5.4.2=h5eee18b_0
|
||||
- zlib=1.2.13=h5eee18b_0
|
||||
- pip:
|
||||
- filelock==3.12.4
|
||||
- fsspec==2023.9.2
|
||||
- grpcio==1.59.0
|
||||
- jinja2==3.1.2
|
||||
- markupsafe==2.1.3
|
||||
- mpmath==1.3.0
|
||||
- networkx==3.1
|
||||
- ninja==1.11.1
|
||||
- nvidia-cublas-cu12==12.1.3.1
|
||||
- nvidia-cuda-cupti-cu12==12.1.105
|
||||
- nvidia-cuda-nvrtc-cu12==12.1.105
|
||||
- nvidia-cuda-runtime-cu12==12.1.105
|
||||
- nvidia-cudnn-cu12==8.9.2.26
|
||||
- nvidia-cufft-cu12==11.0.2.54
|
||||
- nvidia-curand-cu12==10.3.2.106
|
||||
- nvidia-cusolver-cu12==11.4.5.107
|
||||
- nvidia-cusparse-cu12==12.1.0.106
|
||||
- nvidia-nccl-cu12==2.18.1
|
||||
- nvidia-nvjitlink-cu12==12.2.140
|
||||
- nvidia-nvtx-cu12==12.1.105
|
||||
- protobuf==4.24.4
|
||||
- safetensors==0.3.2
|
||||
- sentencepiece==0.1.99
|
||||
- sympy==1.12
|
||||
- torch==2.1.0
|
||||
- triton==2.1.0
|
||||
- typing-extensions==4.8.0
|
||||
prefix: /opt/conda/envs/exllama
|
14
backend/python/exllama/run.sh
Executable file
14
backend/python/exllama/run.sh
Executable file
|
@ -0,0 +1,14 @@
|
|||
#!/bin/bash
|
||||
|
||||
##
|
||||
## A bash script wrapper that runs the exllama server with conda
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate exllama
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python $DIR/exllama.py $@
|
18
backend/python/huggingface/Makefile
Normal file
18
backend/python/huggingface/Makefile
Normal file
|
@ -0,0 +1,18 @@
|
|||
.PONY: huggingface
|
||||
huggingface:
|
||||
@echo "Creating virtual environment..."
|
||||
@conda env create --name huggingface --file huggingface.yml
|
||||
@echo "Virtual environment created."
|
||||
|
||||
.PONY: run
|
||||
run:
|
||||
@echo "Running huggingface..."
|
||||
bash run.sh
|
||||
@echo "huggingface run."
|
||||
|
||||
# It is not working well by using command line. It only6 works with IDE like VSCode.
|
||||
.PONY: test
|
||||
test:
|
||||
@echo "Testing huggingface..."
|
||||
bash test.sh
|
||||
@echo "huggingface tested."
|
5
backend/python/huggingface/README.md
Normal file
5
backend/python/huggingface/README.md
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Creating a separate environment for the huggingface project
|
||||
|
||||
```
|
||||
make huggingface
|
||||
```
|
61
backend/python/huggingface/backend_pb2.py
Normal file
61
backend/python/huggingface/backend_pb2.py
Normal file
File diff suppressed because one or more lines are too long
363
backend/python/huggingface/backend_pb2_grpc.py
Normal file
363
backend/python/huggingface/backend_pb2_grpc.py
Normal file
|
@ -0,0 +1,363 @@
|
|||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
114
backend/python/huggingface/huggingface.py
Executable file
114
backend/python/huggingface/huggingface.py
Executable file
|
@ -0,0 +1,114 @@
|
|||
"""
|
||||
Extra gRPC server for HuggingFace SentenceTransformer models.
|
||||
"""
|
||||
#!/usr/bin/env python3
|
||||
from concurrent import futures
|
||||
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
A gRPC servicer for the backend service.
|
||||
|
||||
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
|
||||
"""
|
||||
def Health(self, request, context):
|
||||
"""
|
||||
A gRPC method that returns the health status of the backend service.
|
||||
|
||||
Args:
|
||||
request: A HealthRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
A Reply object that contains the health status of the backend service.
|
||||
"""
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""
|
||||
A gRPC method that loads a model into memory.
|
||||
|
||||
Args:
|
||||
request: A LoadModelRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
A Result object that contains the result of the LoadModel operation.
|
||||
"""
|
||||
model_name = request.Model
|
||||
try:
|
||||
self.model = SentenceTransformer(model_name)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
|
||||
# Implement your logic here for the LoadModel service
|
||||
# Replace this with your desired response
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""
|
||||
A gRPC method that calculates embeddings for a given sentence.
|
||||
|
||||
Args:
|
||||
request: An EmbeddingRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
An EmbeddingResult object that contains the calculated embeddings.
|
||||
"""
|
||||
# Implement your logic here for the Embedding service
|
||||
# Replace this with your desired response
|
||||
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
|
||||
sentence_embeddings = self.model.encode(request.Embeddings)
|
||||
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings)
|
||||
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
77
backend/python/huggingface/huggingface.yml
Normal file
77
backend/python/huggingface/huggingface.yml
Normal file
|
@ -0,0 +1,77 @@
|
|||
name: huggingface
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1=main
|
||||
- _openmp_mutex=5.1=1_gnu
|
||||
- bzip2=1.0.8=h7b6447c_0
|
||||
- ca-certificates=2023.08.22=h06a4308_0
|
||||
- ld_impl_linux-64=2.38=h1181459_1
|
||||
- libffi=3.4.4=h6a678d5_0
|
||||
- libgcc-ng=11.2.0=h1234567_1
|
||||
- libgomp=11.2.0=h1234567_1
|
||||
- libstdcxx-ng=11.2.0=h1234567_1
|
||||
- libuuid=1.41.5=h5eee18b_0
|
||||
- ncurses=6.4=h6a678d5_0
|
||||
- openssl=3.0.11=h7f8727e_2
|
||||
- pip=23.2.1=py311h06a4308_0
|
||||
- python=3.11.5=h955ad1f_0
|
||||
- readline=8.2=h5eee18b_0
|
||||
- setuptools=68.0.0=py311h06a4308_0
|
||||
- sqlite=3.41.2=h5eee18b_0
|
||||
- tk=8.6.12=h1ccaba5_0
|
||||
- tzdata=2023c=h04d1e81_0
|
||||
- wheel=0.41.2=py311h06a4308_0
|
||||
- xz=5.4.2=h5eee18b_0
|
||||
- zlib=1.2.13=h5eee18b_0
|
||||
- pip:
|
||||
- certifi==2023.7.22
|
||||
- charset-normalizer==3.3.0
|
||||
- click==8.1.7
|
||||
- filelock==3.12.4
|
||||
- fsspec==2023.9.2
|
||||
- grpcio==1.59.0
|
||||
- huggingface-hub==0.17.3
|
||||
- idna==3.4
|
||||
- install==1.3.5
|
||||
- jinja2==3.1.2
|
||||
- joblib==1.3.2
|
||||
- markupsafe==2.1.3
|
||||
- mpmath==1.3.0
|
||||
- networkx==3.1
|
||||
- nltk==3.8.1
|
||||
- numpy==1.26.0
|
||||
- nvidia-cublas-cu12==12.1.3.1
|
||||
- nvidia-cuda-cupti-cu12==12.1.105
|
||||
- nvidia-cuda-nvrtc-cu12==12.1.105
|
||||
- nvidia-cuda-runtime-cu12==12.1.105
|
||||
- nvidia-cudnn-cu12==8.9.2.26
|
||||
- nvidia-cufft-cu12==11.0.2.54
|
||||
- nvidia-curand-cu12==10.3.2.106
|
||||
- nvidia-cusolver-cu12==11.4.5.107
|
||||
- nvidia-cusparse-cu12==12.1.0.106
|
||||
- nvidia-nccl-cu12==2.18.1
|
||||
- nvidia-nvjitlink-cu12==12.2.140
|
||||
- nvidia-nvtx-cu12==12.1.105
|
||||
- packaging==23.2
|
||||
- pillow==10.0.1
|
||||
- protobuf==4.24.4
|
||||
- pyyaml==6.0.1
|
||||
- regex==2023.10.3
|
||||
- requests==2.31.0
|
||||
- safetensors==0.4.0
|
||||
- scikit-learn==1.3.1
|
||||
- scipy==1.11.3
|
||||
- sentence-transformers==2.2.2
|
||||
- sentencepiece==0.1.99
|
||||
- sympy==1.12
|
||||
- threadpoolctl==3.2.0
|
||||
- tokenizers==0.14.1
|
||||
- torch==2.1.0
|
||||
- torchvision==0.16.0
|
||||
- tqdm==4.66.1
|
||||
- transformers==4.34.0
|
||||
- triton==2.1.0
|
||||
- typing-extensions==4.8.0
|
||||
- urllib3==2.0.6
|
||||
prefix: /opt/conda/envs/huggingface
|
14
backend/python/huggingface/run.sh
Executable file
14
backend/python/huggingface/run.sh
Executable file
|
@ -0,0 +1,14 @@
|
|||
#!/bin/bash
|
||||
|
||||
##
|
||||
## A bash script wrapper that runs the huggingface server with conda
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate huggingface
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python $DIR/huggingface.py $@
|
11
backend/python/huggingface/test.sh
Normal file
11
backend/python/huggingface/test.sh
Normal file
|
@ -0,0 +1,11 @@
|
|||
#!/bin/bash
|
||||
##
|
||||
## A bash script wrapper that runs the huggingface server with conda
|
||||
|
||||
# Activate conda environment
|
||||
source activate huggingface
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python -m unittest $DIR/test_huggingface.py
|
81
backend/python/huggingface/test_huggingface.py
Normal file
81
backend/python/huggingface/test_huggingface.py
Normal file
|
@ -0,0 +1,81 @@
|
|||
"""
|
||||
A test script to test the gRPC service
|
||||
"""
|
||||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
|
||||
class TestBackendServicer(unittest.TestCase):
|
||||
"""
|
||||
TestBackendServicer is the class that tests the gRPC service
|
||||
"""
|
||||
def setUp(self):
|
||||
"""
|
||||
This method sets up the gRPC service by starting the server
|
||||
"""
|
||||
self.service = subprocess.Popen(["python3", "huggingface.py", "--addr", "localhost:50051"])
|
||||
|
||||
def tearDown(self) -> None:
|
||||
"""
|
||||
This method tears down the gRPC service by terminating the server
|
||||
"""
|
||||
self.service.terminate()
|
||||
self.service.wait()
|
||||
|
||||
def test_server_startup(self):
|
||||
"""
|
||||
This method tests if the server starts up successfully
|
||||
"""
|
||||
time.sleep(2)
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.Health(backend_pb2.HealthMessage())
|
||||
self.assertEqual(response.message, b'OK')
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Server failed to start")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_load_model(self):
|
||||
"""
|
||||
This method tests if the model is loaded successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-nli-mean-tokens"))
|
||||
self.assertTrue(response.success)
|
||||
self.assertEqual(response.message, "Model loaded successfully")
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("LoadModel service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_embedding(self):
|
||||
"""
|
||||
This method tests if the embeddings are generated successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-nli-mean-tokens"))
|
||||
self.assertTrue(response.success)
|
||||
embedding_request = backend_pb2.PredictOptions(Embeddings="This is a test sentence.")
|
||||
embedding_response = stub.Embedding(embedding_request)
|
||||
self.assertIsNotNone(embedding_response.embeddings)
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Embedding service failed")
|
||||
finally:
|
||||
self.tearDown()
|
11
backend/python/vall-e-x/Makefile
Normal file
11
backend/python/vall-e-x/Makefile
Normal file
|
@ -0,0 +1,11 @@
|
|||
.PONY: ttsvalle
|
||||
ttsvalle:
|
||||
@echo "Creating virtual environment..."
|
||||
@conda env create --name ttsvalle --file ttsvalle.yml
|
||||
@echo "Virtual environment created."
|
||||
|
||||
.PONY: run
|
||||
run:
|
||||
@echo "Running ttsvalle..."
|
||||
bash run.sh
|
||||
@echo "ttsvalle run."
|
5
backend/python/vall-e-x/README.md
Normal file
5
backend/python/vall-e-x/README.md
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Creating a separate environment for the ttsvalle project
|
||||
|
||||
```
|
||||
make ttsvalle
|
||||
```
|
61
backend/python/vall-e-x/backend_pb2.py
Normal file
61
backend/python/vall-e-x/backend_pb2.py
Normal file
File diff suppressed because one or more lines are too long
363
backend/python/vall-e-x/backend_pb2_grpc.py
Normal file
363
backend/python/vall-e-x/backend_pb2_grpc.py
Normal file
|
@ -0,0 +1,363 @@
|
|||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
13
backend/python/vall-e-x/run.sh
Executable file
13
backend/python/vall-e-x/run.sh
Executable file
|
@ -0,0 +1,13 @@
|
|||
#!/bin/bash
|
||||
|
||||
##
|
||||
## A bash script wrapper that runs the ttsvalle server with conda
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate ttsvalle
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python $DIR/ttvalle.py $@
|
137
backend/python/vall-e-x/ttsvalle.py
Normal file
137
backend/python/vall-e-x/ttsvalle.py
Normal file
|
@ -0,0 +1,137 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
from concurrent import futures
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
from utils.generation import SAMPLE_RATE, generate_audio, preload_models
|
||||
from scipy.io.wavfile import write as write_wav
|
||||
from utils.prompt_making import make_prompt
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
gRPC servicer for backend services.
|
||||
"""
|
||||
def Health(self, request, context):
|
||||
"""
|
||||
Health check service.
|
||||
|
||||
Args:
|
||||
request: A backend_pb2.HealthRequest instance.
|
||||
context: A grpc.ServicerContext instance.
|
||||
|
||||
Returns:
|
||||
A backend_pb2.Reply instance with message "OK".
|
||||
"""
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""
|
||||
Load model service.
|
||||
|
||||
Args:
|
||||
request: A backend_pb2.LoadModelRequest instance.
|
||||
context: A grpc.ServicerContext instance.
|
||||
|
||||
Returns:
|
||||
A backend_pb2.Result instance with message "Model loaded successfully" and success=True if successful.
|
||||
A backend_pb2.Result instance with success=False and error message if unsuccessful.
|
||||
"""
|
||||
model_name = request.Model
|
||||
try:
|
||||
print("Preparing models, please wait", file=sys.stderr)
|
||||
# download and load all models
|
||||
preload_models()
|
||||
# Assume directory from request.ModelFile.
|
||||
# Only if request.LoraAdapter it's not an absolute path
|
||||
if request.AudioPath and request.ModelFile != "" and not os.path.isabs(request.AudioPath):
|
||||
# get base path of modelFile
|
||||
modelFileBase = os.path.dirname(request.ModelFile)
|
||||
# modify LoraAdapter to be relative to modelFileBase
|
||||
request.AudioPath = os.path.join(modelFileBase, request.AudioPath)
|
||||
if request.AudioPath != "":
|
||||
print("Generating model", file=sys.stderr)
|
||||
make_prompt(name=model_name, audio_prompt_path=request.AudioPath)
|
||||
### Use given transcript
|
||||
##make_prompt(name=model_name, audio_prompt_path="paimon_prompt.wav",
|
||||
## transcript="Just, what was that? Paimon thought we were gonna get eaten.")
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
# Implement your logic here for the LoadModel service
|
||||
# Replace this with your desired response
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""
|
||||
Text-to-speech service.
|
||||
|
||||
Args:
|
||||
request: A backend_pb2.TTSRequest instance.
|
||||
context: A grpc.ServicerContext instance.
|
||||
|
||||
Returns:
|
||||
A backend_pb2.Result instance with success=True if successful.
|
||||
A backend_pb2.Result instance with success=False and error message if unsuccessful.
|
||||
"""
|
||||
model = request.model
|
||||
print(request, file=sys.stderr)
|
||||
try:
|
||||
audio_array = None
|
||||
if model != "":
|
||||
audio_array = generate_audio(request.text, prompt=model)
|
||||
else:
|
||||
audio_array = generate_audio(request.text)
|
||||
print("saving to", request.dst, file=sys.stderr)
|
||||
# save audio to disk
|
||||
write_wav(request.dst, SAMPLE_RATE, audio_array)
|
||||
print("saved to", request.dst, file=sys.stderr)
|
||||
print("tts for", file=sys.stderr)
|
||||
print(request, file=sys.stderr)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
101
backend/python/vall-e-x/ttsvalle.yml
Normal file
101
backend/python/vall-e-x/ttsvalle.yml
Normal file
|
@ -0,0 +1,101 @@
|
|||
name: ttsvalle
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1=main
|
||||
- _openmp_mutex=5.1=1_gnu
|
||||
- bzip2=1.0.8=h7b6447c_0
|
||||
- ca-certificates=2023.08.22=h06a4308_0
|
||||
- ld_impl_linux-64=2.38=h1181459_1
|
||||
- libffi=3.4.4=h6a678d5_0
|
||||
- libgcc-ng=11.2.0=h1234567_1
|
||||
- libgomp=11.2.0=h1234567_1
|
||||
- libstdcxx-ng=11.2.0=h1234567_1
|
||||
- libuuid=1.41.5=h5eee18b_0
|
||||
- ncurses=6.4=h6a678d5_0
|
||||
- openssl=3.0.11=h7f8727e_2
|
||||
- pip=23.2.1=py310h06a4308_0
|
||||
- python=3.10.13=h955ad1f_0
|
||||
- readline=8.2=h5eee18b_0
|
||||
- setuptools=68.0.0=py310h06a4308_0
|
||||
- sqlite=3.41.2=h5eee18b_0
|
||||
- tk=8.6.12=h1ccaba5_0
|
||||
- tzdata=2023c=h04d1e81_0
|
||||
- wheel=0.41.2=py310h06a4308_0
|
||||
- xz=5.4.2=h5eee18b_0
|
||||
- zlib=1.2.13=h5eee18b_0
|
||||
- pip:
|
||||
- aiofiles==23.2.1
|
||||
- altair==5.1.2
|
||||
- annotated-types==0.6.0
|
||||
- anyio==3.7.1
|
||||
- click==8.1.7
|
||||
- cn2an==0.5.22
|
||||
- cython==3.0.3
|
||||
- einops==0.7.0
|
||||
- encodec==0.1.1
|
||||
- eng-to-ipa==0.0.2
|
||||
- fastapi==0.103.2
|
||||
- ffmpeg-python==0.2.0
|
||||
- ffmpy==0.3.1
|
||||
- fsspec==2023.9.2
|
||||
- future==0.18.3
|
||||
- gradio==3.47.1
|
||||
- gradio-client==0.6.0
|
||||
- grpcio==1.59.0
|
||||
- h11==0.14.0
|
||||
- httpcore==0.18.0
|
||||
- httpx==0.25.0
|
||||
- huggingface-hub==0.17.3
|
||||
- importlib-resources==6.1.0
|
||||
- inflect==7.0.0
|
||||
- jieba==0.42.1
|
||||
- langid==1.1.6
|
||||
- llvmlite==0.41.0
|
||||
- more-itertools==10.1.0
|
||||
- nltk==3.8.1
|
||||
- numba==0.58.0
|
||||
- numpy==1.25.2
|
||||
- nvidia-cublas-cu12==12.1.3.1
|
||||
- nvidia-cuda-cupti-cu12==12.1.105
|
||||
- nvidia-cuda-nvrtc-cu12==12.1.105
|
||||
- nvidia-cuda-runtime-cu12==12.1.105
|
||||
- nvidia-cudnn-cu12==8.9.2.26
|
||||
- nvidia-cufft-cu12==11.0.2.54
|
||||
- nvidia-curand-cu12==10.3.2.106
|
||||
- nvidia-cusolver-cu12==11.4.5.107
|
||||
- nvidia-cusparse-cu12==12.1.0.106
|
||||
- nvidia-nccl-cu12==2.18.1
|
||||
- nvidia-nvjitlink-cu12==12.2.140
|
||||
- nvidia-nvtx-cu12==12.1.105
|
||||
- openai-whisper==20230306
|
||||
- orjson==3.9.7
|
||||
- proces==0.1.7
|
||||
- protobuf==4.24.4
|
||||
- pydantic==2.4.2
|
||||
- pydantic-core==2.10.1
|
||||
- pydub==0.25.1
|
||||
- pyopenjtalk-prebuilt==0.3.0
|
||||
- pypinyin==0.49.0
|
||||
- python-multipart==0.0.6
|
||||
- regex==2023.10.3
|
||||
- safetensors==0.4.0
|
||||
- semantic-version==2.10.0
|
||||
- soundfile==0.12.1
|
||||
- starlette==0.27.0
|
||||
- sudachidict-core==20230927
|
||||
- sudachipy==0.6.7
|
||||
- tokenizers==0.14.1
|
||||
- toolz==0.12.0
|
||||
- torch==2.1.0
|
||||
- torchaudio==2.1.0
|
||||
- torchvision==0.16.0
|
||||
- tqdm==4.66.1
|
||||
- transformers==4.34.0
|
||||
- triton==2.1.0
|
||||
- unidecode==1.3.7
|
||||
- uvicorn==0.23.2
|
||||
- vocos==0.0.3
|
||||
- websockets==11.0.3
|
||||
- wget==3.2
|
||||
prefix: /opt/conda/envs/ttsvalle
|
11
backend/python/vllm/Makefile
Normal file
11
backend/python/vllm/Makefile
Normal file
|
@ -0,0 +1,11 @@
|
|||
.PONY: vllm
|
||||
vllm:
|
||||
@echo "Creating virtual environment..."
|
||||
@conda env create --name vllm --file vllm.yml
|
||||
@echo "Virtual environment created."
|
||||
|
||||
.PONY: run
|
||||
run:
|
||||
@echo "Running vllm..."
|
||||
bash run.sh
|
||||
@echo "vllm run."
|
5
backend/python/vllm/README.md
Normal file
5
backend/python/vllm/README.md
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Creating a separate environment for the vllm project
|
||||
|
||||
```
|
||||
make vllm
|
||||
```
|
61
backend/python/vllm/backend_pb2.py
Normal file
61
backend/python/vllm/backend_pb2.py
Normal file
File diff suppressed because one or more lines are too long
363
backend/python/vllm/backend_pb2_grpc.py
Normal file
363
backend/python/vllm/backend_pb2_grpc.py
Normal file
|
@ -0,0 +1,363 @@
|
|||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
162
backend/python/vllm/backend_vllm.py
Normal file
162
backend/python/vllm/backend_vllm.py
Normal file
|
@ -0,0 +1,162 @@
|
|||
#!/usr/bin/env python3
|
||||
from concurrent import futures
|
||||
import time
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
A gRPC servicer that implements the Backend service defined in backend.proto.
|
||||
"""
|
||||
def generate(self,prompt, max_new_tokens):
|
||||
"""
|
||||
Generates text based on the given prompt and maximum number of new tokens.
|
||||
|
||||
Args:
|
||||
prompt (str): The prompt to generate text from.
|
||||
max_new_tokens (int): The maximum number of new tokens to generate.
|
||||
|
||||
Returns:
|
||||
str: The generated text.
|
||||
"""
|
||||
self.generator.end_beam_search()
|
||||
|
||||
# Tokenizing the input
|
||||
ids = self.generator.tokenizer.encode(prompt)
|
||||
|
||||
self.generator.gen_begin_reuse(ids)
|
||||
initial_len = self.generator.sequence[0].shape[0]
|
||||
has_leading_space = False
|
||||
decoded_text = ''
|
||||
for i in range(max_new_tokens):
|
||||
token = self.generator.gen_single_token()
|
||||
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'):
|
||||
has_leading_space = True
|
||||
|
||||
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
|
||||
if has_leading_space:
|
||||
decoded_text = ' ' + decoded_text
|
||||
|
||||
if token.item() == self.generator.tokenizer.eos_token_id:
|
||||
break
|
||||
return decoded_text
|
||||
|
||||
def Health(self, request, context):
|
||||
"""
|
||||
Returns a health check message.
|
||||
|
||||
Args:
|
||||
request: The health check request.
|
||||
context: The gRPC context.
|
||||
|
||||
Returns:
|
||||
backend_pb2.Reply: The health check reply.
|
||||
"""
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""
|
||||
Loads a language model.
|
||||
|
||||
Args:
|
||||
request: The load model request.
|
||||
context: The gRPC context.
|
||||
|
||||
Returns:
|
||||
backend_pb2.Result: The load model result.
|
||||
"""
|
||||
try:
|
||||
if request.Quantization != "":
|
||||
self.llm = LLM(model=request.Model, quantization=request.Quantization)
|
||||
else:
|
||||
self.llm = LLM(model=request.Model)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""
|
||||
Generates text based on the given prompt and sampling parameters.
|
||||
|
||||
Args:
|
||||
request: The predict request.
|
||||
context: The gRPC context.
|
||||
|
||||
Returns:
|
||||
backend_pb2.Result: The predict result.
|
||||
"""
|
||||
if request.TopP == 0:
|
||||
request.TopP = 0.9
|
||||
|
||||
sampling_params = SamplingParams(temperature=request.Temperature, top_p=request.TopP)
|
||||
outputs = self.llm.generate([request.Prompt], sampling_params)
|
||||
|
||||
generated_text = outputs[0].outputs[0].text
|
||||
# Remove prompt from response if present
|
||||
if request.Prompt in generated_text:
|
||||
generated_text = generated_text.replace(request.Prompt, "")
|
||||
|
||||
return backend_pb2.Result(message=bytes(generated_text, encoding='utf-8'))
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""
|
||||
Generates text based on the given prompt and sampling parameters, and streams the results.
|
||||
|
||||
Args:
|
||||
request: The predict stream request.
|
||||
context: The gRPC context.
|
||||
|
||||
Returns:
|
||||
backend_pb2.Result: The predict stream result.
|
||||
"""
|
||||
# Implement PredictStream RPC
|
||||
#for reply in some_data_generator():
|
||||
# yield reply
|
||||
# Not implemented yet
|
||||
return self.Predict(request, context)
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
14
backend/python/vllm/run.sh
Executable file
14
backend/python/vllm/run.sh
Executable file
|
@ -0,0 +1,14 @@
|
|||
#!/bin/bash
|
||||
|
||||
##
|
||||
## A bash script wrapper that runs the diffusers server with conda
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate vllm
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python $DIR/backend_vllm.py $@
|
41
backend/python/vllm/test_backend_vllm.py
Normal file
41
backend/python/vllm/test_backend_vllm.py
Normal file
|
@ -0,0 +1,41 @@
|
|||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import grpc
|
||||
import backend_pb2_grpc
|
||||
import backend_pb2
|
||||
|
||||
class TestBackendServicer(unittest.TestCase):
|
||||
"""
|
||||
TestBackendServicer is the class that tests the gRPC service.
|
||||
|
||||
This class contains methods to test the startup and shutdown of the gRPC service.
|
||||
"""
|
||||
def setUp(self):
|
||||
self.service = subprocess.Popen(["python", "backend_vllm.py", "--addr", "localhost:50051"])
|
||||
|
||||
def tearDown(self) -> None:
|
||||
self.service.terminate()
|
||||
self.service.wait()
|
||||
|
||||
def test_server_startup(self):
|
||||
time.sleep(2)
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.Health(backend_pb2.HealthMessage())
|
||||
self.assertEqual(response.message, b'OK')
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Server failed to start")
|
||||
finally:
|
||||
self.tearDown()
|
99
backend/python/vllm/vllm.yml
Normal file
99
backend/python/vllm/vllm.yml
Normal file
|
@ -0,0 +1,99 @@
|
|||
name: vllm
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1=main
|
||||
- _openmp_mutex=5.1=1_gnu
|
||||
- bzip2=1.0.8=h7b6447c_0
|
||||
- ca-certificates=2023.08.22=h06a4308_0
|
||||
- ld_impl_linux-64=2.38=h1181459_1
|
||||
- libffi=3.4.4=h6a678d5_0
|
||||
- libgcc-ng=11.2.0=h1234567_1
|
||||
- libgomp=11.2.0=h1234567_1
|
||||
- libstdcxx-ng=11.2.0=h1234567_1
|
||||
- libuuid=1.41.5=h5eee18b_0
|
||||
- ncurses=6.4=h6a678d5_0
|
||||
- openssl=3.0.11=h7f8727e_2
|
||||
- pip=23.2.1=py311h06a4308_0
|
||||
- python=3.11.5=h955ad1f_0
|
||||
- readline=8.2=h5eee18b_0
|
||||
- setuptools=68.0.0=py311h06a4308_0
|
||||
- sqlite=3.41.2=h5eee18b_0
|
||||
- tk=8.6.12=h1ccaba5_0
|
||||
- wheel=0.41.2=py311h06a4308_0
|
||||
- xz=5.4.2=h5eee18b_0
|
||||
- zlib=1.2.13=h5eee18b_0
|
||||
- pip:
|
||||
- aiosignal==1.3.1
|
||||
- anyio==3.7.1
|
||||
- attrs==23.1.0
|
||||
- certifi==2023.7.22
|
||||
- charset-normalizer==3.3.0
|
||||
- click==8.1.7
|
||||
- cmake==3.27.6
|
||||
- fastapi==0.103.2
|
||||
- filelock==3.12.4
|
||||
- frozenlist==1.4.0
|
||||
- fsspec==2023.9.2
|
||||
- grpcio==1.59.0
|
||||
- h11==0.14.0
|
||||
- httptools==0.6.0
|
||||
- huggingface-hub==0.17.3
|
||||
- idna==3.4
|
||||
- jinja2==3.1.2
|
||||
- jsonschema==4.19.1
|
||||
- jsonschema-specifications==2023.7.1
|
||||
- lit==17.0.2
|
||||
- markupsafe==2.1.3
|
||||
- mpmath==1.3.0
|
||||
- msgpack==1.0.7
|
||||
- networkx==3.1
|
||||
- ninja==1.11.1
|
||||
- numpy==1.26.0
|
||||
- nvidia-cublas-cu11==11.10.3.66
|
||||
- nvidia-cuda-cupti-cu11==11.7.101
|
||||
- nvidia-cuda-nvrtc-cu11==11.7.99
|
||||
- nvidia-cuda-runtime-cu11==11.7.99
|
||||
- nvidia-cudnn-cu11==8.5.0.96
|
||||
- nvidia-cufft-cu11==10.9.0.58
|
||||
- nvidia-curand-cu11==10.2.10.91
|
||||
- nvidia-cusolver-cu11==11.4.0.1
|
||||
- nvidia-cusparse-cu11==11.7.4.91
|
||||
- nvidia-nccl-cu11==2.14.3
|
||||
- nvidia-nvtx-cu11==11.7.91
|
||||
- packaging==23.2
|
||||
- pandas==2.1.1
|
||||
- protobuf==4.24.4
|
||||
- psutil==5.9.5
|
||||
- pyarrow==13.0.0
|
||||
- pydantic==1.10.13
|
||||
- python-dateutil==2.8.2
|
||||
- python-dotenv==1.0.0
|
||||
- pytz==2023.3.post1
|
||||
- pyyaml==6.0.1
|
||||
- ray==2.7.0
|
||||
- referencing==0.30.2
|
||||
- regex==2023.10.3
|
||||
- requests==2.31.0
|
||||
- rpds-py==0.10.4
|
||||
- safetensors==0.4.0
|
||||
- sentencepiece==0.1.99
|
||||
- six==1.16.0
|
||||
- sniffio==1.3.0
|
||||
- starlette==0.27.0
|
||||
- sympy==1.12
|
||||
- tokenizers==0.14.1
|
||||
- torch==2.0.1
|
||||
- tqdm==4.66.1
|
||||
- transformers==4.34.0
|
||||
- triton==2.0.0
|
||||
- typing-extensions==4.8.0
|
||||
- tzdata==2023.3
|
||||
- urllib3==2.0.6
|
||||
- uvicorn==0.23.2
|
||||
- uvloop==0.17.0
|
||||
- vllm==0.2.0
|
||||
- watchfiles==0.20.0
|
||||
- websockets==11.0.3
|
||||
- xformers==0.0.22
|
||||
prefix: /opt/conda/envs/vllm
|
Loading…
Add table
Add a link
Reference in a new issue