docs: update to include installer and update advanced YAML options (#2631)

* docs: update quickstart and advanced sections

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* docs: improvements

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* examples(kubernete): add nvidia example

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2024-06-22 12:00:38 +02:00 committed by GitHub
parent 9fb3e4040b
commit 9a7ad75bff
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 667 additions and 447 deletions

View file

@ -106,118 +106,202 @@ local-ai github://mudler/LocalAI/examples/configurations/phi-2.yaml@master
### Full config model file reference
```yaml
# Model name.
# The model name is used to identify the model in the API calls.
name: gpt-3.5-turbo
# Main configuration of the model, template, and system features.
name: "" # Model name, used to identify the model in API calls.
# Default model parameters.
# These options can also be specified in the API calls
parameters:
# Relative to the models path
model: luna-ai-llama2-uncensored.ggmlv3.q5_K_M.bin
# temperature
temperature: 0.3
# all the OpenAI request options here..
top_k:
top_p:
max_tokens:
ignore_eos: true
n_keep: 10
seed:
mode:
step:
negative_prompt:
typical_p:
tfz:
frequency_penalty:
# Precision settings for the model, reducing precision can enhance performance on some hardware.
f16: null # Whether to use 16-bit floating-point precision.
rope_freq_base:
rope_freq_scale:
negative_prompt_scale:
# Concurrency settings for the application.
threads: null # Number of threads to use for processing.
mirostat_eta:
mirostat_tau:
mirostat:
# Default context size
context_size: 512
# Default number of threads
threads: 10
# Define a backend (optional). By default it will try to guess the backend the first time the model is interacted with.
backend: llama-stable # available: llama, stablelm, gpt2, gptj rwkv
# stopwords (if supported by the backend)
stopwords:
- "HUMAN:"
- "### Response:"
# string to trim space to
trimspace:
- string
# Strings to cut from the response
cutstrings:
- "string"
# Roles define how different entities interact in a conversational model.
# It can be used to map roles to specific parts of the conversation.
roles: {} # Roles for entities like user, system, assistant, etc.
# Directory used to store additional assets
asset_dir: ""
# Backend to use for computation (like llama-cpp, diffusers, whisper).
backend: "" # Backend for AI computations.
# define chat roles
roles:
user: "HUMAN:"
system: "GPT:"
assistant: "ASSISTANT:"
# Templates for various types of model interactions.
template:
# template file ".tmpl" with the prompt template to use by default on the endpoint call. Note there is no extension in the files
completion: completion
chat: chat
edit: edit_template
function: function_template
chat: "" # Template for chat interactions. Uses golang templates with Sprig functions.
chat_message: "" # Template for individual chat messages. Uses golang templates with Sprig functions.
completion: "" # Template for generating text completions. Uses golang templates with Sprig functions.
edit: "" # Template for edit operations. Uses golang templates with Sprig functions.
function: "" # Template for function calls. Uses golang templates with Sprig functions.
use_tokenizer_template: false # Whether to use a specific tokenizer template. (vLLM)
join_chat_messages_by_character: null # Character to join chat messages, if applicable. Defaults to newline.
# Function-related settings to control behavior of specific function calls.
function:
disable_no_action: true
no_action_function_name: "reply"
no_action_description_name: "Reply to the AI assistant"
disable_no_action: false # Whether to disable the no-action behavior.
grammar:
parallel_calls: false # Allow to return parallel tools
disable_parallel_new_lines: false # Disable parallel processing for new lines in grammar checks.
mixed_mode: false # Allow mixed-mode grammar enforcing
no_mixed_free_string: false # Disallow free strings in mixed mode.
disable: false # Completely disable grammar enforcing functionality.
prefix: "" # Prefix to add before grammars rules.
expect_strings_after_json: false # Expect string after JSON data.
no_action_function_name: "" # Function name to call when no action is determined.
no_action_description_name: "" # Description name for no-action functions.
response_regex: [] # Regular expressions to match response from
json_regex_match: [] # Regular expressions to match JSON data when in tool mode
replace_function_results: [] # Placeholder to replace function call results with arbitrary strings or patterns.
replace_llm_results: [] # Replace language model results with arbitrary strings or patterns.
capture_llm_results: [] # Capture language model results as text result, among JSON, in function calls. For instance, if a model returns a block for "thinking" and a block for "response", this will allow you to capture the thinking block.
return_name_in_function_response: false # Some models might prefer to use "name" rather then "function" when returning JSON data. This will allow to use "name" as a key in the JSON response.
system_prompt:
rms_norm_eps:
# Set it to 8 for llama2 70b
ngqa: 1
## LLAMA specific options
# Enable F16 if backend supports it
f16: true
# Enable debugging
debug: true
# Enable embeddings
embeddings: true
# Mirostat configuration (llama.cpp only)
mirostat_eta: 0.8
mirostat_tau: 0.9
mirostat: 1
# GPU Layers (only used when built with cublas)
gpu_layers: 22
# Enable memory lock
mmlock: true
# GPU setting to split the tensor in multiple parts and define a main GPU
# see llama.cpp for usage
# Feature gating flags to enable experimental or optional features.
feature_flags: {}
# System prompt to use by default.
system_prompt: ""
# Configuration for splitting tensors across GPUs.
tensor_split: ""
main_gpu: ""
# Define a prompt cache path (relative to the models)
prompt_cache_path: "prompt-cache"
# Cache all the prompts
prompt_cache_all: true
# Read only
prompt_cache_ro: false
# Enable mmap
mmap: true
# Enable low vram mode (GPU only)
low_vram: true
# Set NUMA mode (CPU only)
numa: true
# Lora settings
lora_adapter: "/path/to/lora/adapter"
lora_base: "/path/to/lora/base"
# Disable mulmatq (CUDA)
no_mulmatq: true
# Diffusers/transformers
cuda: true
# Identifier for the main GPU used in multi-GPU setups.
main_gpu: ""
# Small value added to the denominator in RMS normalization to prevent division by zero.
rms_norm_eps: 0
# Natural question generation model parameter.
ngqa: 0
# Path where prompt cache is stored.
prompt_cache_path: ""
# Whether to cache all prompts.
prompt_cache_all: false
# Whether the prompt cache is read-only.
prompt_cache_ro: false
# Mirostat sampling settings.
mirostat_eta: null
mirostat_tau: null
mirostat: null
# GPU-specific layers configuration.
gpu_layers: null
# Memory mapping for efficient I/O operations.
mmap: null
# Memory locking to ensure data remains in RAM.
mmlock: null
# Mode to use minimal VRAM for GPU operations.
low_vram: null
# Words or phrases that halts processing.
stopwords: []
# Strings to cut from responses to maintain context or relevance.
cutstrings: []
# Strings to trim from responses for cleaner outputs.
trimspace: []
trimsuffix: []
# Default context size for the model's understanding of the conversation or text.
context_size: null
# Non-uniform memory access settings, useful for systems with multiple CPUs.
numa: false
# Configuration for LoRA
lora_adapter: ""
lora_base: ""
lora_scale: 0
# Disable matrix multiplication queuing in GPU operations.
no_mulmatq: false
# Model for generating draft responses.
draft_model: ""
n_draft: 0
# Quantization settings for the model, impacting memory and processing speed.
quantization: ""
# Utilization percentage of GPU memory to allocate for the model. (vLLM)
gpu_memory_utilization: 0
# Whether to trust and execute remote code.
trust_remote_code: false
# Force eager execution of TensorFlow operations if applicable. (vLLM)
enforce_eager: false
# Space allocated for swapping data in and out of memory. (vLLM)
swap_space: 0
# Maximum model length, possibly referring to the number of tokens or parameters. (vLLM)
max_model_len: 0
# Size of the tensor parallelism in distributed computing environments. (vLLM)
tensor_parallel_size: 0
# vision model to use for multimodal
mmproj: ""
# Disables offloading of key/value pairs in transformer models to save memory.
no_kv_offloading: false
# Scaling factor for the rope penalty.
rope_scaling: ""
# Type of configuration, often related to the type of task or model architecture.
type: ""
# YARN settings
yarn_ext_factor: 0
yarn_attn_factor: 0
yarn_beta_fast: 0
yarn_beta_slow: 0
# AutoGPT-Q settings, for configurations specific to GPT models.
autogptq:
model_base_name: "" # Base name of the model.
device: "" # Device to run the model on.
triton: false # Whether to use Triton Inference Server.
use_fast_tokenizer: false # Whether to use a fast tokenizer for quicker processing.
# configuration for diffusers model
diffusers:
cuda: false # Whether to use CUDA
pipeline_type: "" # Type of pipeline to use.
scheduler_type: "" # Type of scheduler for controlling operations.
enable_parameters: "" # Parameters to enable in the diffuser.
cfg_scale: 0 # Scale for CFG in the diffuser setup.
img2img: false # Whether image-to-image transformation is supported.
clip_skip: 0 # Number of steps to skip in CLIP operations.
clip_model: "" # Model to use for CLIP operations.
clip_subfolder: "" # Subfolder for storing CLIP-related data.
control_net: "" # Control net to use
# Step count, usually for image processing models
step: 0
# Configuration for gRPC communication.
grpc:
attempts: 0 # Number of retry attempts for gRPC calls.
attempts_sleep_time: 0 # Sleep time between retries.
# Text-to-Speech (TTS) configuration.
tts:
voice: "" # Voice setting for TTS.
vall-e:
audio_path: "" # Path to audio files for Vall-E.
# Whether to use CUDA for GPU-based operations.
cuda: false
# List of files to download as part of the setup or operations.
download_files: []
```
### Prompt templates

View file

@ -0,0 +1,33 @@
+++
disableToc = false
title = "Installer options"
weight = 24
+++
An installation script is available for quick and hassle-free installations, streamlining the setup process for new users.
Can be used with the following command:
```bash
curl https://localai.io/install.sh | sh
```
Installation can be configured with Environment variables, for example:
```bash
curl https://localai.io/install.sh | VAR=value sh
```
List of the Environment Variables:
| Environment Variable | Description |
|----------------------|--------------------------------------------------------------|
| **DOCKER_INSTALL** | Set to "true" to enable the installation of Docker images. |
| **USE_AIO** | Set to "true" to use the all-in-one LocalAI Docker image. |
| **API_KEY** | Specify an API key for accessing LocalAI, if required. |
| **CORE_IMAGES** | Set to "true" to download core LocalAI images. |
| **PORT** | Specifies the port on which LocalAI will run (default is 8080). |
| **THREADS** | Number of processor threads the application should use. Defaults to the number of logical cores minus one. |
| **VERSION** | Specifies the version of LocalAI to install. Defaults to the latest available version. |
| **MODELS_PATH** | Directory path where LocalAI models are stored (default is /usr/share/local-ai/models). |
We are looking into improving the installer, and as this is a first iteration any feedback is welcome! Open up an [issue](https://github.com/mudler/LocalAI/issues/new/choose) if something doesn't work for you!

View file

@ -0,0 +1,126 @@
+++
disableToc = false
title = "Run other Models"
weight = 23
icon = "rocket_launch"
+++
## Running other models
> _Do you have already a model file? Skip to [Run models manually]({{%relref "docs/getting-started/manual" %}})_.
To load models into LocalAI, you can either [use models manually]({{%relref "docs/getting-started/manual" %}}) or configure LocalAI to pull the models from external sources, like Huggingface and configure the model.
To do that, you can point LocalAI to an URL to a YAML configuration file - however - LocalAI does also have some popular model configuration embedded in the binary as well. Below you can find a list of the models configuration that LocalAI has pre-built, see [Model customization]({{%relref "docs/getting-started/customize-model" %}}) on how to configure models from URLs.
There are different categories of models: [LLMs]({{%relref "docs/features/text-generation" %}}), [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) , [Embeddings]({{%relref "docs/features/embeddings" %}}), [Audio to Text]({{%relref "docs/features/audio-to-text" %}}), and [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) depending on the backend being used and the model architecture.
{{% alert icon="💡" %}}
To customize the models, see [Model customization]({{%relref "docs/getting-started/customize-model" %}}). For more model configurations, visit the [Examples Section](https://github.com/mudler/LocalAI/tree/master/examples/configurations) and the configurations for the models below is available [here](https://github.com/mudler/LocalAI/tree/master/embedded/models).
{{% /alert %}}
{{< tabs tabTotal="3" >}}
{{% tab tabName="CPU-only" %}}
> 💡Don't need GPU acceleration? use the CPU images which are lighter and do not have Nvidia dependencies
| Model | Category | Docker command |
| --- | --- | --- |
| [phi-2](https://huggingface.co/microsoft/phi-2) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core phi-2``` |
| 🌋 [bakllava](https://github.com/SkunkworksAI/BakLLaVA) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core bakllava``` |
| 🌋 [llava-1.5](https://llava-vl.github.io/) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core llava-1.5``` |
| 🌋 [llava-1.6-mistral](https://huggingface.co/cjpais/llava-1.6-mistral-7b-gguf) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core llava-1.6-mistral``` |
| 🌋 [llava-1.6-vicuna](https://huggingface.co/cmp-nct/llava-1.6-gguf) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core llava-1.6-vicuna``` |
| [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core mistral-openorca``` |
| [bert-cpp](https://github.com/skeskinen/bert.cpp) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core bert-cpp``` |
| [all-minilm-l6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg all-minilm-l6-v2``` |
| whisper-base | [Audio to Text]({{%relref "docs/features/audio-to-text" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core whisper-base``` |
| rhasspy-voice-en-us-amy | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core rhasspy-voice-en-us-amy``` |
| 🐸 [coqui](https://github.com/coqui-ai/TTS) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg coqui``` |
| 🐶 [bark](https://github.com/suno-ai/bark) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg bark``` |
| 🔊 [vall-e-x](https://github.com/Plachtaa/VALL-E-X) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg vall-e-x``` |
| mixtral-instruct Mixtral-8x7B-Instruct-v0.1 | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core mixtral-instruct``` |
| [tinyllama-chat](https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v0.3-GGUF) [original model](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core tinyllama-chat``` |
| [dolphin-2.5-mixtral-8x7b](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core dolphin-2.5-mixtral-8x7b``` |
| 🐍 [mamba](https://github.com/state-spaces/mamba) | [LLM]({{%relref "docs/features/text-generation" %}}) | GPU-only |
| animagine-xl | [Text to Image]({{%relref "docs/features/image-generation" %}}) | GPU-only |
| transformers-tinyllama | [LLM]({{%relref "docs/features/text-generation" %}}) | GPU-only |
| [codellama-7b](https://huggingface.co/codellama/CodeLlama-7b-hf) (with transformers) | [LLM]({{%relref "docs/features/text-generation" %}}) | GPU-only |
| [codellama-7b-gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF) (with llama.cpp) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core codellama-7b-gguf``` |
| [hermes-2-pro-mistral](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core hermes-2-pro-mistral``` |
{{% /tab %}}
{{% tab tabName="GPU (CUDA 11)" %}}
> To know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version` see also [GPU acceleration]({{%relref "docs/features/gpu-acceleration" %}}).
| Model | Category | Docker command |
| --- | --- | --- |
| [phi-2](https://huggingface.co/microsoft/phi-2) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core phi-2``` |
| 🌋 [bakllava](https://github.com/SkunkworksAI/BakLLaVA) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core bakllava``` |
| 🌋 [llava-1.5](https://llava-vl.github.io/) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-cublas-cuda11-core llava-1.5``` |
| 🌋 [llava-1.6-mistral](https://huggingface.co/cjpais/llava-1.6-mistral-7b-gguf) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-cublas-cuda11-core llava-1.6-mistral``` |
| 🌋 [llava-1.6-vicuna](https://huggingface.co/cmp-nct/llava-1.6-gguf) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-cublas-cuda11-core llava-1.6-vicuna``` |
| [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core mistral-openorca``` |
| [bert-cpp](https://github.com/skeskinen/bert.cpp) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core bert-cpp``` |
| [all-minilm-l6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 all-minilm-l6-v2``` |
| whisper-base | [Audio to Text]({{%relref "docs/features/audio-to-text" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core whisper-base``` |
| rhasspy-voice-en-us-amy | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core rhasspy-voice-en-us-amy``` |
| 🐸 [coqui](https://github.com/coqui-ai/TTS) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 coqui``` |
| 🐶 [bark](https://github.com/suno-ai/bark) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 bark``` |
| 🔊 [vall-e-x](https://github.com/Plachtaa/VALL-E-X) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 vall-e-x``` |
| mixtral-instruct Mixtral-8x7B-Instruct-v0.1 | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core mixtral-instruct``` |
| [tinyllama-chat](https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v0.3-GGUF) [original model](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core tinyllama-chat``` |
| [dolphin-2.5-mixtral-8x7b](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core dolphin-2.5-mixtral-8x7b``` |
| 🐍 [mamba](https://github.com/state-spaces/mamba) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 mamba-chat``` |
| animagine-xl | [Text to Image]({{%relref "docs/features/image-generation" %}}) | ```docker run -ti -p 8080:8080 -e COMPEL=0 --gpus all localai/localai:{{< version >}}-cublas-cuda11 animagine-xl``` |
| transformers-tinyllama | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 transformers-tinyllama``` |
| [codellama-7b](https://huggingface.co/codellama/CodeLlama-7b-hf) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 codellama-7b``` |
| [codellama-7b-gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core codellama-7b-gguf``` |
| [hermes-2-pro-mistral](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core hermes-2-pro-mistral``` |
{{% /tab %}}
{{% tab tabName="GPU (CUDA 12)" %}}
> To know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version` see also [GPU acceleration]({{%relref "docs/features/gpu-acceleration" %}}).
| Model | Category | Docker command |
| --- | --- | --- |
| [phi-2](https://huggingface.co/microsoft/phi-2) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core phi-2``` |
| 🌋 [bakllava](https://github.com/SkunkworksAI/BakLLaVA) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core bakllava``` |
| 🌋 [llava-1.5](https://llava-vl.github.io/) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-cublas-cuda12-core llava-1.5``` |
| 🌋 [llava-1.6-mistral](https://huggingface.co/cjpais/llava-1.6-mistral-7b-gguf) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-cublas-cuda12-core llava-1.6-mistral``` |
| 🌋 [llava-1.6-vicuna](https://huggingface.co/cmp-nct/llava-1.6-gguf) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-cublas-cuda12-core llava-1.6-vicuna``` |
| [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core mistral-openorca``` |
| [bert-cpp](https://github.com/skeskinen/bert.cpp) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core bert-cpp``` |
| [all-minilm-l6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 all-minilm-l6-v2``` |
| whisper-base | [Audio to Text]({{%relref "docs/features/audio-to-text" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core whisper-base``` |
| rhasspy-voice-en-us-amy | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core rhasspy-voice-en-us-amy``` |
| 🐸 [coqui](https://github.com/coqui-ai/TTS) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 coqui``` |
| 🐶 [bark](https://github.com/suno-ai/bark) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 bark``` |
| 🔊 [vall-e-x](https://github.com/Plachtaa/VALL-E-X) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 vall-e-x``` |
| mixtral-instruct Mixtral-8x7B-Instruct-v0.1 | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core mixtral-instruct``` |
| [tinyllama-chat](https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v0.3-GGUF) [original model](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core tinyllama-chat``` |
| [dolphin-2.5-mixtral-8x7b](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core dolphin-2.5-mixtral-8x7b``` |
| 🐍 [mamba](https://github.com/state-spaces/mamba) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 mamba-chat``` |
| animagine-xl | [Text to Image]({{%relref "docs/features/image-generation" %}}) | ```docker run -ti -p 8080:8080 -e COMPEL=0 --gpus all localai/localai:{{< version >}}-cublas-cuda12 animagine-xl``` |
| transformers-tinyllama | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 transformers-tinyllama``` |
| [codellama-7b](https://huggingface.co/codellama/CodeLlama-7b-hf) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 codellama-7b``` |
| [codellama-7b-gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core codellama-7b-gguf``` |
| [hermes-2-pro-mistral](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core hermes-2-pro-mistral``` |
{{% /tab %}}
{{< /tabs >}}
{{% alert icon="💡" %}}
**Tip** You can actually specify multiple models to start an instance with the models loaded, for example to have both llava and phi-2 configured:
```bash
docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core llava phi-2
```
{{% /alert %}}