manual merge, build testing starting from here

This commit is contained in:
Dave Lee 2023-06-05 21:27:19 -04:00
commit 8e6e7c456b
No known key found for this signature in database
67 changed files with 2095 additions and 1617 deletions

View file

@ -1,10 +1,8 @@
package api
import (
"context"
"errors"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/gofiber/fiber/v2/middleware/cors"
"github.com/gofiber/fiber/v2/middleware/logger"
@ -13,16 +11,18 @@ import (
"github.com/rs/zerolog/log"
)
func App(c context.Context, configFile string, loader *model.ModelLoader, uploadLimitMB, threads, ctxSize int, f16 bool, debug, disableMessage bool, imageDir string) *fiber.App {
func App(opts ...AppOption) (*fiber.App, error) {
options := newOptions(opts...)
zerolog.SetGlobalLevel(zerolog.InfoLevel)
if debug {
if options.debug {
zerolog.SetGlobalLevel(zerolog.DebugLevel)
}
// Return errors as JSON responses
app := fiber.New(fiber.Config{
BodyLimit: uploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
DisableStartupMessage: disableMessage,
BodyLimit: options.uploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
DisableStartupMessage: options.disableMessage,
// Override default error handler
ErrorHandler: func(ctx *fiber.Ctx, err error) error {
// Status code defaults to 500
@ -43,71 +43,107 @@ func App(c context.Context, configFile string, loader *model.ModelLoader, upload
},
})
if debug {
if options.debug {
app.Use(logger.New(logger.Config{
Format: "[${ip}]:${port} ${status} - ${method} ${path}\n",
}))
}
cm := NewConfigMerger()
if err := cm.LoadConfigs(loader.ModelPath); err != nil {
if err := cm.LoadConfigs(options.loader.ModelPath); err != nil {
log.Error().Msgf("error loading config files: %s", err.Error())
}
if configFile != "" {
if err := cm.LoadConfigFile(configFile); err != nil {
if options.configFile != "" {
if err := cm.LoadConfigFile(options.configFile); err != nil {
log.Error().Msgf("error loading config file: %s", err.Error())
}
}
if debug {
if options.debug {
for _, v := range cm.ListConfigs() {
cfg, _ := cm.GetConfig(v)
log.Debug().Msgf("Model: %s (config: %+v)", v, cfg)
}
}
if options.assetsDestination != "" {
if err := PrepareBackendAssets(options.backendAssets, options.assetsDestination); err != nil {
log.Warn().Msgf("Failed extracting backend assets files: %s (might be required for some backends to work properly, like gpt4all)", err)
}
}
// Default middleware config
app.Use(recover.New())
app.Use(cors.New())
if options.preloadJSONModels != "" {
if err := ApplyGalleryFromString(options.loader.ModelPath, options.preloadJSONModels, cm); err != nil {
return nil, err
}
}
if options.preloadModelsFromPath != "" {
if err := ApplyGalleryFromFile(options.loader.ModelPath, options.preloadModelsFromPath, cm); err != nil {
return nil, err
}
}
if options.cors {
if options.corsAllowOrigins == "" {
app.Use(cors.New())
} else {
app.Use(cors.New(cors.Config{
AllowOrigins: options.corsAllowOrigins,
}))
}
}
// LocalAI API endpoints
applier := newGalleryApplier(loader.ModelPath)
applier.start(c, cm)
app.Post("/models/apply", applyModelGallery(loader.ModelPath, cm, applier.C))
applier := newGalleryApplier(options.loader.ModelPath)
applier.start(options.context, cm)
app.Post("/models/apply", applyModelGallery(options.loader.ModelPath, cm, applier.C))
app.Get("/models/jobs/:uuid", getOpStatus(applier))
// openAI compatible API endpoint
// chat
app.Post("/v1/chat/completions", chatEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/chat/completions", chatEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/v1/chat/completions", chatEndpoint(cm, options))
app.Post("/chat/completions", chatEndpoint(cm, options))
// edit
app.Post("/v1/edits", editEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/edits", editEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/v1/edits", editEndpoint(cm, options))
app.Post("/edits", editEndpoint(cm, options))
// completion
app.Post("/v1/completions", completionEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/completions", completionEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/v1/completions", completionEndpoint(cm, options))
app.Post("/completions", completionEndpoint(cm, options))
// embeddings
app.Post("/v1/embeddings", embeddingsEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/embeddings", embeddingsEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/v1/engines/:model/embeddings", embeddingsEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/v1/embeddings", embeddingsEndpoint(cm, options))
app.Post("/embeddings", embeddingsEndpoint(cm, options))
app.Post("/v1/engines/:model/embeddings", embeddingsEndpoint(cm, options))
// audio
app.Post("/v1/audio/transcriptions", transcriptEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/v1/audio/transcriptions", transcriptEndpoint(cm, options))
// images
app.Post("/v1/images/generations", imageEndpoint(cm, debug, loader, imageDir))
app.Post("/v1/images/generations", imageEndpoint(cm, options))
if imageDir != "" {
app.Static("/generated-images", imageDir)
if options.imageDir != "" {
app.Static("/generated-images", options.imageDir)
}
// models
app.Get("/v1/models", listModels(loader, cm))
app.Get("/models", listModels(loader, cm))
ok := func(c *fiber.Ctx) error {
return c.SendStatus(200)
}
return app
// Kubernetes health checks
app.Get("/healthz", ok)
app.Get("/readyz", ok)
// models
app.Get("/v1/models", listModels(options.loader, cm))
app.Get("/models", listModels(options.loader, cm))
return app, nil
}

View file

@ -3,6 +3,7 @@ package api_test
import (
"bytes"
"context"
"embed"
"encoding/json"
"fmt"
"io/ioutil"
@ -95,6 +96,9 @@ func postModelApplyRequest(url string, request modelApplyRequest) (response map[
return
}
//go:embed backend-assets/*
var backendAssets embed.FS
var _ = Describe("API test", func() {
var app *fiber.App
@ -114,7 +118,8 @@ var _ = Describe("API test", func() {
modelLoader = model.NewModelLoader(tmpdir)
c, cancel = context.WithCancel(context.Background())
app = App(c, "", modelLoader, 15, 1, 512, false, true, true, "")
app, err = App(WithContext(c), WithModelLoader(modelLoader), WithBackendAssets(backendAssets), WithBackendAssetsOutput(tmpdir))
Expect(err).ToNot(HaveOccurred())
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
@ -190,6 +195,32 @@ var _ = Describe("API test", func() {
Expect(err).ToNot(HaveOccurred())
Expect(content["backend"]).To(Equal("bert-embeddings"))
})
It("runs gpt4all", Label("gpt4all"), func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
URL: "github:go-skynet/model-gallery/gpt4all-j.yaml",
Name: "gpt4all-j",
Overrides: map[string]string{},
})
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
uuid := response["uuid"].(string)
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
fmt.Println(response)
return response["processed"].(bool)
}, "360s").Should(Equal(true))
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-j", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "How are you?"}}})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Message.Content).To(ContainSubstring("well"))
})
})
})
@ -198,7 +229,9 @@ var _ = Describe("API test", func() {
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
c, cancel = context.WithCancel(context.Background())
app = App(c, "", modelLoader, 15, 1, 512, false, true, true, "")
var err error
app, err = App(WithContext(c), WithModelLoader(modelLoader))
Expect(err).ToNot(HaveOccurred())
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
@ -254,7 +287,7 @@ var _ = Describe("API test", func() {
It("returns errors", func() {
_, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "foomodel", Prompt: "abcdedfghikl"})
Expect(err).To(HaveOccurred())
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: could not load model - all backends returned error: 12 errors occurred:"))
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: could not load model - all backends returned error: 10 errors occurred:"))
})
It("transcribes audio", func() {
if runtime.GOOS != "linux" {
@ -316,7 +349,9 @@ var _ = Describe("API test", func() {
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
c, cancel = context.WithCancel(context.Background())
app = App(c, os.Getenv("CONFIG_FILE"), modelLoader, 5, 1, 512, false, true, true, "")
var err error
app, err = App(WithContext(c), WithModelLoader(modelLoader), WithConfigFile(os.Getenv("CONFIG_FILE")))
Expect(err).ToNot(HaveOccurred())
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")

27
api/backend_assets.go Normal file
View file

@ -0,0 +1,27 @@
package api
import (
"embed"
"os"
"path/filepath"
"github.com/go-skynet/LocalAI/pkg/assets"
"github.com/rs/zerolog/log"
)
func PrepareBackendAssets(backendAssets embed.FS, dst string) error {
// Extract files from the embedded FS
err := assets.ExtractFiles(backendAssets, dst)
if err != nil {
return err
}
// Set GPT4ALL libs where we extracted the files
// https://github.com/nomic-ai/gpt4all/commit/27e80e1d10985490c9fd4214e4bf458cfcf70896
gpt4alldir := filepath.Join(dst, "backend-assets", "gpt4all")
os.Setenv("GPT4ALL_IMPLEMENTATIONS_PATH", gpt4alldir)
log.Debug().Msgf("GPT4ALL_IMPLEMENTATIONS_PATH: %s", gpt4alldir)
return nil
}

View file

@ -3,7 +3,7 @@ package api
import (
"encoding/json"
"fmt"
"io/ioutil"
"io/fs"
"os"
"path/filepath"
"strings"
@ -16,24 +16,28 @@ import (
)
type Config struct {
OpenAIRequest `yaml:"parameters"`
Name string `yaml:"name"`
StopWords []string `yaml:"stopwords"`
Cutstrings []string `yaml:"cutstrings"`
TrimSpace []string `yaml:"trimspace"`
ContextSize int `yaml:"context_size"`
F16 bool `yaml:"f16"`
Threads int `yaml:"threads"`
Debug bool `yaml:"debug"`
Roles map[string]string `yaml:"roles"`
Embeddings bool `yaml:"embeddings"`
Backend string `yaml:"backend"`
TemplateConfig TemplateConfig `yaml:"template"`
MirostatETA float64 `yaml:"mirostat_eta"`
MirostatTAU float64 `yaml:"mirostat_tau"`
Mirostat int `yaml:"mirostat"`
NGPULayers int `yaml:"gpu_layers"`
ImageGenerationAssets string `yaml:"asset_dir"`
OpenAIRequest `yaml:"parameters"`
Name string `yaml:"name"`
StopWords []string `yaml:"stopwords"`
Cutstrings []string `yaml:"cutstrings"`
TrimSpace []string `yaml:"trimspace"`
ContextSize int `yaml:"context_size"`
F16 bool `yaml:"f16"`
Threads int `yaml:"threads"`
Debug bool `yaml:"debug"`
Roles map[string]string `yaml:"roles"`
Embeddings bool `yaml:"embeddings"`
Backend string `yaml:"backend"`
TemplateConfig TemplateConfig `yaml:"template"`
MirostatETA float64 `yaml:"mirostat_eta"`
MirostatTAU float64 `yaml:"mirostat_tau"`
Mirostat int `yaml:"mirostat"`
NGPULayers int `yaml:"gpu_layers"`
ImageGenerationAssets string `yaml:"asset_dir"`
PromptCachePath string `yaml:"prompt_cache_path"`
PromptCacheAll bool `yaml:"prompt_cache_all"`
PromptStrings, InputStrings []string
InputToken [][]int
}
@ -126,11 +130,18 @@ func (cm ConfigMerger) ListConfigs() []string {
func (cm ConfigMerger) LoadConfigs(path string) error {
cm.Lock()
defer cm.Unlock()
files, err := ioutil.ReadDir(path)
entries, err := os.ReadDir(path)
if err != nil {
return err
}
files := make([]fs.FileInfo, 0, len(entries))
for _, entry := range entries {
info, err := entry.Info()
if err != nil {
return err
}
files = append(files, info)
}
for _, file := range files {
// Skip templates, YAML and .keep files
if !strings.Contains(file.Name(), ".yaml") {

54
api/config_test.go Normal file
View file

@ -0,0 +1,54 @@
package api
import (
"os"
"github.com/go-skynet/LocalAI/pkg/model"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
var _ = Describe("Test cases for config related functions", func() {
var (
configFile string
)
Context("Test Read configuration functions", func() {
configFile = os.Getenv("CONFIG_FILE")
It("Test ReadConfigFile", func() {
config, err := ReadConfigFile(configFile)
Expect(err).To(BeNil())
Expect(config).ToNot(BeNil())
// two configs in config.yaml
Expect(config[0].Name).To(Equal("list1"))
Expect(config[1].Name).To(Equal("list2"))
})
It("Test LoadConfigs", func() {
cm := NewConfigMerger()
options := newOptions()
modelLoader := model.NewModelLoader(os.Getenv("MODELS_PATH"))
WithModelLoader(modelLoader)(options)
err := cm.LoadConfigs(options.loader.ModelPath)
Expect(err).To(BeNil())
Expect(cm.configs).ToNot(BeNil())
// config should includes gpt4all models's api.config
Expect(cm.configs).To(HaveKey("gpt4all"))
// config should includes gpt2 models's api.config
Expect(cm.configs).To(HaveKey("gpt4all-2"))
// config should includes text-embedding-ada-002 models's api.config
Expect(cm.configs).To(HaveKey("text-embedding-ada-002"))
// config should includes rwkv_test models's api.config
Expect(cm.configs).To(HaveKey("rwkv_test"))
// config should includes whisper-1 models's api.config
Expect(cm.configs).To(HaveKey("whisper-1"))
})
})
})

View file

@ -2,10 +2,12 @@ package api
import (
"context"
"encoding/json"
"fmt"
"io/ioutil"
"net/http"
"net/url"
"os"
"strings"
"sync"
@ -40,6 +42,43 @@ func newGalleryApplier(modelPath string) *galleryApplier {
statuses: make(map[string]*galleryOpStatus),
}
}
func applyGallery(modelPath string, req ApplyGalleryModelRequest, cm *ConfigMerger) error {
url, err := req.DecodeURL()
if err != nil {
return err
}
// Send a GET request to the URL
response, err := http.Get(url)
if err != nil {
return err
}
defer response.Body.Close()
// Read the response body
body, err := ioutil.ReadAll(response.Body)
if err != nil {
return err
}
// Unmarshal YAML data into a Config struct
var config gallery.Config
err = yaml.Unmarshal(body, &config)
if err != nil {
return err
}
config.Files = append(config.Files, req.AdditionalFiles...)
if err := gallery.Apply(modelPath, req.Name, &config, req.Overrides); err != nil {
return err
}
// Reload models
return cm.LoadConfigs(modelPath)
}
func (g *galleryApplier) updatestatus(s string, op *galleryOpStatus) {
g.Lock()
defer g.Unlock()
@ -66,44 +105,7 @@ func (g *galleryApplier) start(c context.Context, cm *ConfigMerger) {
g.updatestatus(op.id, &galleryOpStatus{Error: e, Processed: true})
}
url, err := op.req.DecodeURL()
if err != nil {
updateError(err)
continue
}
// Send a GET request to the URL
response, err := http.Get(url)
if err != nil {
updateError(err)
continue
}
defer response.Body.Close()
// Read the response body
body, err := ioutil.ReadAll(response.Body)
if err != nil {
updateError(err)
continue
}
// Unmarshal YAML data into a Config struct
var config gallery.Config
err = yaml.Unmarshal(body, &config)
if err != nil {
updateError(fmt.Errorf("failed to unmarshal YAML: %v", err))
continue
}
config.Files = append(config.Files, op.req.AdditionalFiles...)
if err := gallery.Apply(g.modelPath, op.req.Name, &config, op.req.Overrides); err != nil {
updateError(err)
continue
}
// Reload models
if err := cm.LoadConfigs(g.modelPath); err != nil {
if err := applyGallery(g.modelPath, op.req, cm); err != nil {
updateError(err)
continue
}
@ -114,6 +116,41 @@ func (g *galleryApplier) start(c context.Context, cm *ConfigMerger) {
}()
}
func ApplyGalleryFromFile(modelPath, s string, cm *ConfigMerger) error {
dat, err := os.ReadFile(s)
if err != nil {
return err
}
var requests []ApplyGalleryModelRequest
err = json.Unmarshal(dat, &requests)
if err != nil {
return err
}
for _, r := range requests {
if err := applyGallery(modelPath, r, cm); err != nil {
return err
}
}
return nil
}
func ApplyGalleryFromString(modelPath, s string, cm *ConfigMerger) error {
var requests []ApplyGalleryModelRequest
err := json.Unmarshal([]byte(s), &requests)
if err != nil {
return err
}
for _, r := range requests {
if err := applyGallery(modelPath, r, cm); err != nil {
return err
}
}
return nil
}
// endpoints
type ApplyGalleryModelRequest struct {

View file

@ -4,6 +4,7 @@ import (
"bufio"
"bytes"
"encoding/base64"
"errors"
"encoding/json"
"fmt"
"io"
@ -142,31 +143,102 @@ func defaultRequest(modelFile string) OpenAIRequest {
}
// https://platform.openai.com/docs/api-reference/completions
func completionEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
func completionEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
process := func(s string, req *OpenAIRequest, config *Config, loader *model.ModelLoader, responses chan OpenAIResponse) {
ComputeChoices(s, req, config, loader, func(s string, c *[]Choice) {}, func(s string) bool {
resp := OpenAIResponse{
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{{Text: s}},
Object: "text_completion",
}
log.Debug().Msgf("Sending goroutine: %s", s)
model, input, err := readInput(c, loader, true)
responses <- resp
return true
})
close(responses)
}
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, o.loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, loader, debug, threads, ctx, f16)
log.Debug().Msgf("`input`: %+v", input)
config, input, err := readConfig(model, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
if input.Stream {
log.Debug().Msgf("Stream request received")
c.Context().SetContentType("text/event-stream")
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
//c.Set("Content-Type", "text/event-stream")
c.Set("Cache-Control", "no-cache")
c.Set("Connection", "keep-alive")
c.Set("Transfer-Encoding", "chunked")
}
templateFile := config.Model
if config.TemplateConfig.Completion != "" {
templateFile = config.TemplateConfig.Completion
}
if input.Stream {
if (len(config.PromptStrings) > 1) {
return errors.New("cannot handle more than 1 `PromptStrings` when `Stream`ing")
}
predInput := config.PromptStrings[0]
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.loader.TemplatePrefix(templateFile, struct {
Input string
}{Input: predInput})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
}
responses := make(chan OpenAIResponse)
go process(predInput, input, config, o.loader, responses)
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
for ev := range responses {
var buf bytes.Buffer
enc := json.NewEncoder(&buf)
enc.Encode(ev)
log.Debug().Msgf("Sending chunk: %s", buf.String())
fmt.Fprintf(w, "data: %v\n", buf.String())
w.Flush()
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{{FinishReason: "stop"}},
}
respData, _ := json.Marshal(resp)
w.WriteString(fmt.Sprintf("data: %s\n\n", respData))
w.WriteString("data: [DONE]\n\n")
w.Flush()
}))
return nil
}
var result []Choice
for _, i := range config.PromptStrings {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := loader.TemplatePrefix(templateFile, struct {
templatedInput, err := o.loader.TemplatePrefix(templateFile, struct {
Input string
}{Input: i})
if err == nil {
@ -174,7 +246,7 @@ func completionEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader,
log.Debug().Msgf("Template found, input modified to: %s", i)
}
r, err := ComputeChoices(i, input, config, loader, func(s string, c *[]Choice) {
r, err := ComputeChoices(i, input, config, o.loader, func(s string, c *[]Choice) {
*c = append(*c, Choice{Text: s})
}, nil)
if err != nil {
@ -199,14 +271,14 @@ func completionEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader,
}
// https://platform.openai.com/docs/api-reference/embeddings
func embeddingsEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool) func(c *fiber.Ctx) error {
func embeddingsEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, loader, true)
model, input, err := readInput(c, o.loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, loader, debug, threads, ctx, f16)
config, input, err := readConfig(model, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
@ -216,7 +288,7 @@ func embeddingsEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader,
for i, s := range config.InputToken {
// get the model function to call for the result
embedFn, err := ModelEmbedding("", s, loader, *config)
embedFn, err := ModelEmbedding("", s, o.loader, *config)
if err != nil {
return err
}
@ -230,7 +302,7 @@ func embeddingsEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader,
for i, s := range config.InputStrings {
// get the model function to call for the result
embedFn, err := ModelEmbedding(s, []int{}, loader, *config)
embedFn, err := ModelEmbedding(s, []int{}, o.loader, *config)
if err != nil {
return err
}
@ -256,13 +328,20 @@ func embeddingsEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader,
}
}
func chatEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool) func(c *fiber.Ctx) error {
func chatEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
process := func(s string, req *OpenAIRequest, config *Config, loader *model.ModelLoader, responses chan OpenAIResponse) {
initialMessage := OpenAIResponse{
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{{Delta: &Message{Role: "assistant"}}},
Object: "chat.completion.chunk",
}
responses <- initialMessage
ComputeChoices(s, req, config, loader, func(s string, c *[]Choice) {}, func(s string) bool {
resp := OpenAIResponse{
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{{Delta: &Message{Role: "assistant", Content: s}}},
Choices: []Choice{{Delta: &Message{Content: s}}},
Object: "chat.completion.chunk",
}
log.Debug().Msgf("Sending goroutine: %s", s)
@ -273,12 +352,12 @@ func chatEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, threa
close(responses)
}
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, loader, true)
model, input, err := readInput(c, o.loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, loader, debug, threads, ctx, f16)
config, input, err := readConfig(model, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
@ -319,7 +398,7 @@ func chatEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, threa
}
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := loader.TemplatePrefix(templateFile, struct {
templatedInput, err := o.loader.TemplatePrefix(templateFile, struct {
Input string
}{Input: predInput})
if err == nil {
@ -330,7 +409,7 @@ func chatEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, threa
if input.Stream {
responses := make(chan OpenAIResponse)
go process(predInput, input, config, loader, responses)
go process(predInput, input, config, o.loader, responses)
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
@ -339,13 +418,11 @@ func chatEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, threa
enc := json.NewEncoder(&buf)
enc.Encode(ev)
fmt.Fprintf(w, "event: data\n\n")
fmt.Fprintf(w, "data: %v\n\n", buf.String())
log.Debug().Msgf("Sending chunk: %s", buf.String())
fmt.Fprintf(w, "data: %v\n", buf.String())
w.Flush()
}
w.WriteString("event: data\n\n")
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{{FinishReason: "stop"}},
@ -353,12 +430,13 @@ func chatEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, threa
respData, _ := json.Marshal(resp)
w.WriteString(fmt.Sprintf("data: %s\n\n", respData))
w.WriteString("data: [DONE]\n\n")
w.Flush()
}))
return nil
}
result, err := ComputeChoices(predInput, input, config, loader, func(s string, c *[]Choice) {
result, err := ComputeChoices(predInput, input, config, o.loader, func(s string, c *[]Choice) {
*c = append(*c, Choice{Message: &Message{Role: "assistant", Content: s}})
}, nil)
if err != nil {
@ -378,14 +456,14 @@ func chatEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, threa
}
}
func editEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool) func(c *fiber.Ctx) error {
func editEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, loader, true)
model, input, err := readInput(c, o.loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, loader, debug, threads, ctx, f16)
config, input, err := readConfig(model, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
@ -401,7 +479,7 @@ func editEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, threa
var result []Choice
for _, i := range config.InputStrings {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := loader.TemplatePrefix(templateFile, struct {
templatedInput, err := o.loader.TemplatePrefix(templateFile, struct {
Input string
Instruction string
}{Input: i})
@ -410,7 +488,7 @@ func editEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, threa
log.Debug().Msgf("Template found, input modified to: %s", i)
}
r, err := ComputeChoices(i, input, config, loader, func(s string, c *[]Choice) {
r, err := ComputeChoices(i, input, config, o.loader, func(s string, c *[]Choice) {
*c = append(*c, Choice{Text: s})
}, nil)
if err != nil {
@ -449,9 +527,9 @@ func editEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, threa
*
*/
func imageEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, imageDir string) func(c *fiber.Ctx) error {
func imageEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readInput(c, loader, false)
m, input, err := readInput(c, o.loader, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
@ -461,7 +539,7 @@ func imageEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, imag
}
log.Debug().Msgf("Loading model: %+v", m)
config, input, err := readConfig(m, input, cm, loader, debug, 0, 0, false)
config, input, err := readConfig(m, input, cm, o.loader, o.debug, 0, 0, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
@ -518,7 +596,7 @@ func imageEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, imag
tempDir := ""
if !b64JSON {
tempDir = imageDir
tempDir = o.imageDir
}
// Create a temporary file
outputFile, err := ioutil.TempFile(tempDir, "b64")
@ -535,7 +613,7 @@ func imageEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, imag
baseURL := c.BaseURL()
fn, err := ImageGeneration(height, width, mode, step, input.Seed, positive_prompt, negative_prompt, output, loader, *config)
fn, err := ImageGeneration(height, width, mode, step, input.Seed, positive_prompt, negative_prompt, output, o.loader, *config)
if err != nil {
return err
}
@ -574,14 +652,14 @@ func imageEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, imag
}
// https://platform.openai.com/docs/api-reference/audio/create
func transcriptEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool) func(c *fiber.Ctx) error {
func transcriptEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readInput(c, loader, false)
m, input, err := readInput(c, o.loader, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(m, input, cm, loader, debug, threads, ctx, f16)
config, input, err := readConfig(m, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
@ -616,7 +694,7 @@ func transcriptEndpoint(cm *ConfigMerger, debug bool, loader *model.ModelLoader,
log.Debug().Msgf("Audio file copied to: %+v", dst)
whisperModel, err := loader.BackendLoader(model.WhisperBackend, config.Model, []llama.ModelOption{}, uint32(config.Threads))
whisperModel, err := o.loader.BackendLoader(model.WhisperBackend, config.Model, []llama.ModelOption{}, uint32(config.Threads))
if err != nil {
return err
}

137
api/options.go Normal file
View file

@ -0,0 +1,137 @@
package api
import (
"context"
"embed"
model "github.com/go-skynet/LocalAI/pkg/model"
)
type Option struct {
context context.Context
configFile string
loader *model.ModelLoader
uploadLimitMB, threads, ctxSize int
f16 bool
debug, disableMessage bool
imageDir string
cors bool
preloadJSONModels string
preloadModelsFromPath string
corsAllowOrigins string
backendAssets embed.FS
assetsDestination string
}
type AppOption func(*Option)
func newOptions(o ...AppOption) *Option {
opt := &Option{
context: context.Background(),
uploadLimitMB: 15,
threads: 1,
ctxSize: 512,
debug: true,
disableMessage: true,
}
for _, oo := range o {
oo(opt)
}
return opt
}
func WithCors(b bool) AppOption {
return func(o *Option) {
o.cors = b
}
}
func WithCorsAllowOrigins(b string) AppOption {
return func(o *Option) {
o.corsAllowOrigins = b
}
}
func WithBackendAssetsOutput(out string) AppOption {
return func(o *Option) {
o.assetsDestination = out
}
}
func WithBackendAssets(f embed.FS) AppOption {
return func(o *Option) {
o.backendAssets = f
}
}
func WithContext(ctx context.Context) AppOption {
return func(o *Option) {
o.context = ctx
}
}
func WithYAMLConfigPreload(configFile string) AppOption {
return func(o *Option) {
o.preloadModelsFromPath = configFile
}
}
func WithJSONStringPreload(configFile string) AppOption {
return func(o *Option) {
o.preloadJSONModels = configFile
}
}
func WithConfigFile(configFile string) AppOption {
return func(o *Option) {
o.configFile = configFile
}
}
func WithModelLoader(loader *model.ModelLoader) AppOption {
return func(o *Option) {
o.loader = loader
}
}
func WithUploadLimitMB(limit int) AppOption {
return func(o *Option) {
o.uploadLimitMB = limit
}
}
func WithThreads(threads int) AppOption {
return func(o *Option) {
o.threads = threads
}
}
func WithContextSize(ctxSize int) AppOption {
return func(o *Option) {
o.ctxSize = ctxSize
}
}
func WithF16(f16 bool) AppOption {
return func(o *Option) {
o.f16 = f16
}
}
func WithDebug(debug bool) AppOption {
return func(o *Option) {
o.debug = debug
}
}
func WithDisableMessage(disableMessage bool) AppOption {
return func(o *Option) {
o.disableMessage = disableMessage
}
}
func WithImageDir(imageDir string) AppOption {
return func(o *Option) {
o.imageDir = imageDir
}
}

View file

@ -2,16 +2,19 @@ package api
import (
"fmt"
"os"
"path/filepath"
"regexp"
"strings"
"sync"
"github.com/donomii/go-rwkv.cpp"
"github.com/go-skynet/LocalAI/pkg/langchain"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/stablediffusion"
"github.com/go-skynet/bloomz.cpp"
bert "github.com/go-skynet/go-bert.cpp"
gpt2 "github.com/go-skynet/go-gpt2.cpp"
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
llama "github.com/go-skynet/go-llama.cpp"
gpt4all "github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
)
@ -102,7 +105,7 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c Config)
switch model := inferenceModel.(type) {
case *llama.LLama:
fn = func() ([]float32, error) {
predictOptions := buildLLamaPredictOptions(c)
predictOptions := buildLLamaPredictOptions(c, loader.ModelPath)
if len(tokens) > 0 {
return model.TokenEmbeddings(tokens, predictOptions...)
}
@ -151,7 +154,7 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c Config)
}, nil
}
func buildLLamaPredictOptions(c Config) []llama.PredictOption {
func buildLLamaPredictOptions(c Config, modelPath string) []llama.PredictOption {
// Generate the prediction using the language model
predictOptions := []llama.PredictOption{
llama.SetTemperature(c.Temperature),
@ -161,6 +164,17 @@ func buildLLamaPredictOptions(c Config) []llama.PredictOption {
llama.SetThreads(c.Threads),
}
if c.PromptCacheAll {
predictOptions = append(predictOptions, llama.EnablePromptCacheAll)
}
if c.PromptCachePath != "" {
// Create parent directory
p := filepath.Join(modelPath, c.PromptCachePath)
os.MkdirAll(filepath.Dir(p), 0755)
predictOptions = append(predictOptions, llama.SetPathPromptCache(p))
}
if c.Mirostat != 0 {
predictOptions = append(predictOptions, llama.SetMirostat(c.Mirostat))
}
@ -243,23 +257,23 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
return response, nil
}
case *gpt2.GPTNeoX:
case *transformers.GPTNeoX:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(c.Temperature),
transformers.SetTopP(c.TopP),
transformers.SetTopK(c.TopK),
transformers.SetTokens(c.Maxtokens),
transformers.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
}
return model.Predict(
@ -267,23 +281,23 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
predictOptions...,
)
}
case *gpt2.Replit:
case *transformers.Replit:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(c.Temperature),
transformers.SetTopP(c.TopP),
transformers.SetTopK(c.TopK),
transformers.SetTokens(c.Maxtokens),
transformers.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
}
return model.Predict(
@ -291,23 +305,23 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
predictOptions...,
)
}
case *gpt2.Starcoder:
case *transformers.Starcoder:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(c.Temperature),
transformers.SetTopP(c.TopP),
transformers.SetTopK(c.TopK),
transformers.SetTokens(c.Maxtokens),
transformers.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
}
return model.Predict(
@ -315,23 +329,23 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
predictOptions...,
)
}
case *gpt2.RedPajama:
case *transformers.MPT:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(c.Temperature),
transformers.SetTopP(c.TopP),
transformers.SetTopK(c.TopK),
transformers.SetTokens(c.Maxtokens),
transformers.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
}
return model.Predict(
@ -359,23 +373,23 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
predictOptions...,
)
}
case *gpt2.StableLM:
case *transformers.GPTJ:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(c.Temperature),
transformers.SetTopP(c.TopP),
transformers.SetTopK(c.TopK),
transformers.SetTokens(c.Maxtokens),
transformers.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
}
return model.Predict(
@ -383,23 +397,23 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
predictOptions...,
)
}
case *gpt2.Dolly:
case *transformers.Dolly:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(c.Temperature),
transformers.SetTopP(c.TopP),
transformers.SetTopK(c.TopK),
transformers.SetTokens(c.Maxtokens),
transformers.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
}
return model.Predict(
@ -407,23 +421,23 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
predictOptions...,
)
}
case *gpt2.GPT2:
case *transformers.GPT2:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(c.Temperature),
transformers.SetTopP(c.TopP),
transformers.SetTopK(c.TopK),
transformers.SetTokens(c.Maxtokens),
transformers.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
}
return model.Predict(
@ -469,7 +483,7 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
model.SetTokenCallback(tokenCallback)
}
predictOptions := buildLLamaPredictOptions(c)
predictOptions := buildLLamaPredictOptions(c, loader.ModelPath)
str, er := model.Predict(
s,
@ -481,6 +495,23 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
model.SetTokenCallback(nil)
return str, er
}
case *langchain.HuggingFace:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []langchain.PredictOption{
langchain.SetModel(c.Model),
langchain.SetMaxTokens(c.Maxtokens),
langchain.SetTemperature(c.Temperature),
langchain.SetStopWords(c.StopWords),
}
pred, er := model.PredictHuggingFace(s, predictOptions...)
if er != nil {
return "", er
}
return pred.Completion, nil
}
}
return func() (string, error) {