feat: elevenlabs sound-generation api (#3355)

* initial version of elevenlabs compatible soundgeneration api and cli command

Signed-off-by: Dave Lee <dave@gray101.com>

* minor cleanup

Signed-off-by: Dave Lee <dave@gray101.com>

* restore TTS, add test

Signed-off-by: Dave Lee <dave@gray101.com>

* remove stray s

Signed-off-by: Dave Lee <dave@gray101.com>

* fix

Signed-off-by: Dave Lee <dave@gray101.com>

---------

Signed-off-by: Dave Lee <dave@gray101.com>
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
This commit is contained in:
Dave 2024-08-23 20:20:28 -04:00 committed by GitHub
parent 84d6e5a987
commit 81ae92f017
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
20 changed files with 450 additions and 37 deletions

View file

@ -15,7 +15,7 @@ import backend_pb2_grpc
import grpc
from scipy.io.wavfile import write as write_wav
from scipy.io import wavfile
from transformers import AutoProcessor, MusicgenForConditionalGeneration
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
@ -63,6 +63,61 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
return backend_pb2.Result(message="Model loaded successfully", success=True)
def SoundGeneration(self, request, context):
model_name = request.model
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
try:
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
inputs = None
if request.text == "":
inputs = self.model.get_unconditional_inputs(num_samples=1)
elif request.HasField('src'):
# TODO SECURITY CODE GOES HERE LOL
# WHO KNOWS IF THIS WORKS???
sample_rate, wsamples = wavfile.read('path_to_your_file.wav')
if request.HasField('src_divisor'):
wsamples = wsamples[: len(wsamples) // request.src_divisor]
inputs = self.processor(
audio=wsamples,
sampling_rate=sample_rate,
text=[request.text],
padding=True,
return_tensors="pt",
)
else:
inputs = self.processor(
text=[request.text],
padding=True,
return_tensors="pt",
)
tokens = 256
if request.HasField('duration'):
tokens = int(request.duration * 51.2) # 256 tokens = 5 seconds, therefore 51.2 tokens is one second
guidance = 3.0
if request.HasField('temperature'):
guidance = request.temperature
dosample = True
if request.HasField('sample'):
dosample = request.sample
audio_values = self.model.generate(**inputs, do_sample=dosample, guidance_scale=guidance, max_new_tokens=tokens)
print("[transformers-musicgen] SoundGeneration generated!", file=sys.stderr)
sampling_rate = self.model.config.audio_encoder.sampling_rate
wavfile.write(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
print("[transformers-musicgen] SoundGeneration saved to", request.dst, file=sys.stderr)
print("[transformers-musicgen] SoundGeneration for", file=sys.stderr)
print("[transformers-musicgen] SoundGeneration requested tokens", tokens, file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
# The TTS endpoint is older, and provides fewer features, but exists for compatibility reasons
def TTS(self, request, context):
model_name = request.model
if model_name == "":
@ -75,8 +130,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
padding=True,
return_tensors="pt",
)
tokens = 256
# TODO get tokens from request?
tokens = 512 # No good place to set the "length" in TTS, so use 10s as a sane default
audio_values = self.model.generate(**inputs, max_new_tokens=tokens)
print("[transformers-musicgen] TTS generated!", file=sys.stderr)
sampling_rate = self.model.config.audio_encoder.sampling_rate