feat(diffusers): update, add autopipeline, controlnet (#1432)

* feat(diffusers): update, add autopipeline, controlenet

* tests with AutoPipeline

* simplify logic
This commit is contained in:
Ettore Di Giacinto 2023-12-13 13:20:22 -05:00 committed by GitHub
parent 72325fd0a3
commit 7641f92cde
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
19 changed files with 812 additions and 770 deletions

View file

@ -18,9 +18,9 @@ import backend_pb2_grpc
import grpc
from diffusers import StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler
from diffusers import StableDiffusionImg2ImgPipeline
from diffusers import StableDiffusionImg2ImgPipeline, AutoPipelineForText2Image, ControlNetModel
from diffusers.pipelines.stable_diffusion import safety_checker
from diffusers.utils import load_image
from compel import Compel
from transformers import CLIPTextModel
@ -30,6 +30,7 @@ from safetensors.torch import load_file
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
COMPEL=os.environ.get("COMPEL", "1") == "1"
CLIPSKIP=os.environ.get("CLIPSKIP", "1") == "1"
SAFETENSORS=os.environ.get("SAFETENSORS", "1") == "1"
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
@ -135,8 +136,11 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
print(f"Loading model {request.Model}...", file=sys.stderr)
print(f"Request {request}", file=sys.stderr)
torchType = torch.float32
variant = None
if request.F16Memory:
torchType = torch.float16
variant="fp16"
local = False
modelFile = request.Model
@ -160,14 +164,8 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
fromSingleFile = request.Model.startswith("http") or request.Model.startswith("/") or local
if request.IMG2IMG and request.PipelineType == "":
request.PipelineType == "StableDiffusionImg2ImgPipeline"
if request.PipelineType == "":
request.PipelineType == "StableDiffusionPipeline"
## img2img
if request.PipelineType == "StableDiffusionImg2ImgPipeline":
if (request.PipelineType == "StableDiffusionImg2ImgPipeline") or (request.IMG2IMG and request.PipelineType == ""):
if fromSingleFile:
self.pipe = StableDiffusionImg2ImgPipeline.from_single_file(modelFile,
torch_dtype=torchType,
@ -177,12 +175,18 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
torch_dtype=torchType,
guidance_scale=cfg_scale)
if request.PipelineType == "StableDiffusionDepth2ImgPipeline":
elif request.PipelineType == "StableDiffusionDepth2ImgPipeline":
self.pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
## text2img
if request.PipelineType == "StableDiffusionPipeline":
elif request.PipelineType == "AutoPipelineForText2Image" or request.PipelineType == "":
self.pipe = AutoPipelineForText2Image.from_pretrained(request.Model,
torch_dtype=torchType,
use_safetensors=SAFETENSORS,
variant=variant,
guidance_scale=cfg_scale)
elif request.PipelineType == "StableDiffusionPipeline":
if fromSingleFile:
self.pipe = StableDiffusionPipeline.from_single_file(modelFile,
torch_dtype=torchType,
@ -191,13 +195,11 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
self.pipe = StableDiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
if request.PipelineType == "DiffusionPipeline":
elif request.PipelineType == "DiffusionPipeline":
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
if request.PipelineType == "StableDiffusionXLPipeline":
elif request.PipelineType == "StableDiffusionXLPipeline":
if fromSingleFile:
self.pipe = StableDiffusionXLPipeline.from_single_file(modelFile,
torch_dtype=torchType, use_safetensors=True,
@ -207,21 +209,34 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
request.Model,
torch_dtype=torchType,
use_safetensors=True,
# variant="fp16"
variant=variant,
guidance_scale=cfg_scale)
# https://github.com/huggingface/diffusers/issues/4446
# do not use text_encoder in the constructor since then
# https://github.com/huggingface/diffusers/issues/3212#issuecomment-1521841481
if CLIPSKIP and request.CLIPSkip != 0:
text_encoder = CLIPTextModel.from_pretrained(clipmodel, num_hidden_layers=request.CLIPSkip, subfolder=clipsubfolder, torch_dtype=torchType)
self.pipe.text_encoder=text_encoder
self.clip_skip = request.CLIPSkip
else:
self.clip_skip = 0
# torch_dtype needs to be customized. float16 for GPU, float32 for CPU
# TODO: this needs to be customized
if request.SchedulerType != "":
self.pipe.scheduler = get_scheduler(request.SchedulerType, self.pipe.scheduler.config)
self.compel = Compel(tokenizer=self.pipe.tokenizer, text_encoder=self.pipe.text_encoder)
if request.ControlNet:
self.controlnet = ControlNetModel.from_pretrained(
request.ControlNet, torch_dtype=torchType, variant=variant
)
self.pipe.controlnet = self.controlnet
else:
self.controlnet = None
if request.CUDA:
self.pipe.to('cuda')
if self.controlnet:
self.controlnet.to('cuda')
# Assume directory from request.ModelFile.
# Only if request.LoraAdapter it's not an absolute path
if request.LoraAdapter and request.ModelFile != "" and not os.path.isabs(request.LoraAdapter) and request.LoraAdapter:
@ -316,9 +331,15 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
"num_inference_steps": steps,
}
if request.src != "":
if request.src != "" and not self.controlnet:
image = Image.open(request.src)
options["image"] = image
elif self.controlnet and request.src:
pose_image = load_image(request.src)
options["image"] = pose_image
if CLIPSKIP and self.clip_skip != 0:
options["clip_skip"]=self.clip_skip
# Get the keys that we will build the args for our pipe for
keys = options.keys()