This commit is contained in:
Ettore Di Giacinto 2025-05-14 20:11:06 +02:00
parent 029f97c2a2
commit 7437d0c9ca
6 changed files with 552 additions and 385 deletions

View file

@ -11,8 +11,7 @@
#include <memory>
#include <string>
#include <getopt.h>
#include "clip.h"
#include "llava.h"
#include "mtmd.h"
#include "log.h"
#include "stb_image.h"
#include "common.h"
@ -210,6 +209,8 @@ struct llama_client_slot
int32_t num_prompt_tokens_processed = 0;
json prompt;
json data;
std::string generated_text;
llama_token sampled;
std::vector<llama_token> cache_tokens;
@ -239,7 +240,7 @@ struct llama_client_slot
int32_t n_past_se = 0; // self-extend
// multimodal
std::vector<slot_image> images;
mtmd_context * mctx = nullptr;
// stats
size_t sent_count = 0;
@ -270,17 +271,6 @@ struct llama_client_slot
n_past_se = 0;
generated_token_probs.clear();
for (slot_image & img : images)
{
free(img.image_embedding);
if (img.img_data) {
clip_image_u8_free(img.img_data);
}
img.prefix_prompt = "";
}
images.clear();
}
bool has_budget(common_params &global_params) {
@ -456,6 +446,9 @@ struct llama_server_context
llama_context *ctx = nullptr;
const llama_vocab * vocab = nullptr;
// multimodal
mtmd_context * mctx = nullptr;
clip_ctx *clp_ctx = nullptr;
common_params params;
@ -494,6 +487,10 @@ struct llama_server_context
~llama_server_context()
{
if (mctx) {
mtmd_free(mctx);
mctx = nullptr;
}
if (ctx)
{
llama_free(ctx);
@ -512,12 +509,14 @@ struct llama_server_context
if (!params.mmproj.path.empty()) {
multimodal = true;
LOG_INFO("Multi Modal Mode Enabled", {});
clp_ctx = clip_init(params.mmproj.path.c_str(), clip_context_params {
/* use_gpu */ has_gpu,
/*verbosity=*/ GGML_LOG_LEVEL_INFO,
});
if(clp_ctx == nullptr) {
LOG_ERR("unable to load clip model: %s", params.mmproj.path.c_str());
mtmd_context_params mparams = mtmd_context_params_default();
mparams.use_gpu = has_gpu;
mparams.print_timings = false;
mparams.n_threads = params.cpuparams.n_threads;
mparams.verbosity = GGML_LOG_LEVEL_INFO;
mctx = mtmd_init_from_file(params.mmproj.path.c_str(), model, mparams);
if (mctx == nullptr) {
LOG_ERR("failed to load multimodal model, '%s'\n", params.mmproj.path.c_str());
return false;
}
@ -579,6 +578,8 @@ struct llama_server_context
slot.id = i;
slot.n_ctx = n_ctx_slot;
slot.n_predict = params.n_predict;
slot.mctx = mctx;
//slot.cache_tokens.has_mtmd = mctx != nullptr;
LOG_INFO("new slot", {
{"slot_id", slot.id},
@ -616,54 +617,61 @@ struct llama_server_context
batch = llama_batch_init(n_ctx, 0, params.n_parallel);
}
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
std::vector<server_tokens> tokenize(json &data, const json & json_prompt, bool add_bos) const
{
// TODO: currently, we tokenize using special tokens by default
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
// but it's better compared to completely ignoring ChatML and other chat templates
const bool TMP_FORCE_SPECIAL = true;
mtmd::bitmaps bitmaps;
std::vector<server_tokens> inputs;
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
std::vector<llama_token> prompt_tokens;
if (json_prompt.is_array())
if (mctx != nullptr)
{
bool first = true;
for (const auto& p : json_prompt)
const auto &images_data = data.find("image_data");
if (images_data != data.end() && images_data->is_array())
{
if (p.is_string())
for (const auto &img : *images_data)
{
auto s = p.template get<std::string>();
std::vector<llama_token> p;
if (first)
{
p = common_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
first = false;
const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(image_buffer.data(), image_buffer.size()));
if (!bmp.ptr) {
throw std::runtime_error("Failed to load image");
}
else
{
p = common_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
}
else
{
if (first)
{
first = false;
}
prompt_tokens.push_back(p.template get<llama_token>());
// calculate bitmap hash (for KV caching)
std::string hash = fnv_hash(bmp.data(), bmp.nx()*bmp.ny()*3);
bmp.set_id(hash.c_str());
bitmaps.entries.push_back(std::move(bmp));
}
}
}
else
{
auto s = json_prompt.template get<std::string>();
prompt_tokens = common_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
// multimodal
std::string prompt_str = json_prompt.template get<std::string>();
mtmd_input_text inp_txt = {
prompt_str.c_str(),
/* add_special */ true,
/* parse_special */ true,
};
mtmd::input_chunks chunks(mtmd_input_chunks_init());
auto bitmaps_c_ptr = bitmaps.c_ptr();
int32_t tokenized = mtmd_tokenize(mctx,
chunks.ptr.get(),
&inp_txt,
bitmaps_c_ptr.data(),
bitmaps_c_ptr.size());
if (tokenized != 0) {
throw std::runtime_error("Failed to tokenize prompt");
}
server_tokens tmp(chunks, true);
inputs.push_back(std::move(tmp));
} else {
// non-multimodal version
auto tokenized_prompts = tokenize_input_prompts(vocab, json_prompt, true, true);
for (auto & p : tokenized_prompts) {
auto tmp = server_tokens(p, mctx != nullptr);
inputs.push_back(std::move(tmp));
}
}
return prompt_tokens;
return inputs;
}
llama_client_slot* get_slot(int id) {
@ -716,6 +724,8 @@ struct llama_server_context
slot->sparams.grammar_triggers = grammar_triggers;
slot->sparams.grammar_lazy = grammar_lazy;
slot->data = data;
if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
// Might be better to reject the request with a 400 ?
LOG_WARNING("Max tokens to predict exceeds server configuration", {
@ -757,43 +767,7 @@ struct llama_server_context
if (json_value(data, "ignore_eos", false) && has_eos_token) {
slot->sparams.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
}
/*
slot->sparams.penalty_prompt_tokens.clear();
slot->sparams.use_penalty_prompt_tokens = false;
const auto &penalty_prompt = data.find("penalty_prompt");
if (penalty_prompt != data.end())
{
if (penalty_prompt->is_string())
{
const auto penalty_prompt_string = penalty_prompt->get<std::string>();
auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
if (slot->params.n_predict > 0)
{
slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
}
slot->sparams.use_penalty_prompt_tokens = true;
}
else if (penalty_prompt->is_array())
{
const auto n_tokens = penalty_prompt->size();
slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
const int n_vocab = llama_n_vocab(model);
for (const auto &penalty_token : *penalty_prompt)
{
if (penalty_token.is_number_integer())
{
const auto tok = penalty_token.get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
slot->sparams.penalty_prompt_tokens.push_back(tok);
}
}
}
slot->sparams.use_penalty_prompt_tokens = true;
}
}
*/
slot->sparams.logit_bias.clear();
const auto &logit_bias = data.find("logit_bias");
@ -869,79 +843,6 @@ struct llama_server_context
}
if (multimodal)
{
const auto &images_data = data.find("image_data");
if (images_data != data.end() && images_data->is_array())
{
for (const auto &img : *images_data)
{
const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
slot_image img_sl;
img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
img_sl.img_data = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
{
LOG_ERR("%s: failed to load image, slot_id: %d, img_sl_id: %d",
__func__,
slot->id,
img_sl.id
);
return false;
}
LOG_VERBOSE("image loaded", {
{"slot_id", slot->id},
{"img_sl_id", img_sl.id}
});
img_sl.request_encode_image = true;
slot->images.push_back(img_sl);
}
// process prompt
// example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
if (slot->images.size() > 0 && !slot->prompt.is_array())
{
std::string prompt = slot->prompt.get<std::string>();
size_t pos = 0, begin_prefix = 0;
std::string pattern = "[img-";
while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
size_t end_prefix = pos;
pos += pattern.length();
size_t end_pos = prompt.find(']', pos);
if (end_pos != std::string::npos)
{
std::string image_id = prompt.substr(pos, end_pos - pos);
try
{
int img_id = std::stoi(image_id);
bool found = false;
for (slot_image &img : slot->images)
{
if (img.id == img_id) {
found = true;
img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
begin_prefix = end_pos + 1;
break;
}
}
if (!found) {
LOG("ERROR: Image with id: %i, not found.\n", img_id);
slot->images.clear();
return false;
}
} catch (const std::invalid_argument& e) {
LOG("Invalid image number id in prompt\n");
slot->images.clear();
return false;
}
}
}
slot->prompt = "";
slot->params.input_suffix = prompt.substr(begin_prefix);
slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
}
}
}
if (slot->ctx_sampling != nullptr)
{
@ -1189,26 +1090,6 @@ struct llama_server_context
return slot.has_next_token; // continue
}
bool process_images(llama_client_slot &slot) const
{
for (slot_image &img : slot.images)
{
if (!img.request_encode_image)
{
continue;
}
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.cpuparams.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
LOG("Error processing the given image");
return false;
}
img.request_encode_image = false;
}
return slot.images.size() > 0;
}
void send_error(task_server& task, const std::string &error)
{
LOG("task %i - error: %s\n", task.id, error.c_str());
@ -1451,74 +1332,6 @@ struct llama_server_context
}
}
// for multiple images processing
bool ingest_images(llama_client_slot &slot, int n_batch)
{
int image_idx = 0;
while (image_idx < (int) slot.images.size())
{
slot_image &img = slot.images[image_idx];
// process prefix prompt
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
{
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
};
if (llama_decode(ctx, batch_view))
{
LOG("%s : failed to eval\n", __func__);
return false;
}
}
// process image with llm
for (int i = 0; i < img.image_tokens; i += n_batch)
{
int n_eval = img.image_tokens - i;
if (n_eval > n_batch)
{
n_eval = n_batch;
}
const int n_embd = llama_model_n_embd(model);
float * embd = img.image_embedding + i * n_embd;
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, slot.n_past, 0);
if (llama_decode(ctx, llava_batch.batch))
{
LOG("%s : failed to eval image\n", __func__);
return false;
}
slot.n_past += n_eval;
}
image_idx++;
common_batch_clear(batch);
// append prefix of next image
const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
slot.params.input_suffix : // no more images, then process suffix prompt
(json)(slot.images[image_idx].prefix_prompt);
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
for (int i = 0; i < (int) append_tokens.size(); ++i)
{
common_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
slot.n_past += 1;
}
}
return true;
}
void request_cancel(int task_id)
{
task_server task;
@ -1733,7 +1546,7 @@ struct llama_server_context
{
for (auto & slot : slots)
{
const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();
const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty());
// empty prompt passed -> release the slot and send empty response
// note: infill mode allows empty prompt
@ -1750,7 +1563,7 @@ struct llama_server_context
{
slot.state = PROCESSING;
slot.command = NONE;
std::vector<llama_token> prompt_tokens;
std::vector<server_tokens> prompt_tokens;
slot.t_start_process_prompt = ggml_time_us();
slot.t_start_genereration = 0;
@ -1762,8 +1575,8 @@ struct llama_server_context
params.input_suffix.erase(0, 1);
suff_rm_leading_spc = false;
}
auto prefix_tokens = tokenize(slot.params.input_prefix, false);
auto suffix_tokens = tokenize(slot.params.input_suffix, false);
auto prefix_tokens = tokenize(slot.data, slot.params.input_prefix, false);
auto suffix_tokens = tokenize(slot.data, slot.params.input_suffix, false);
const int space_token = 29871; // TODO: this should not be hardcoded
if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
@ -1779,7 +1592,7 @@ struct llama_server_context
}
else
{
prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
prompt_tokens = tokenize(slot.data, slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
}
slot.num_prompt_tokens = prompt_tokens.size();
@ -1892,18 +1705,36 @@ struct llama_server_context
});
llama_kv_cache_seq_rm(ctx, slot.id, p0, -1);
// process the prefix of first image
std::vector<server_tokens> prefix_tokens = prompt_tokens;
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
// check if we should process the image
if (slot.n_past < slot.n_prompt_tokens
&& slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
// process the image
int32_t new_n_past;
int32_t res = prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past);
int32_t n_pos = new_n_past - slot.n_past;
if (res != 0) {
slot.release();
LOG_ERR("failed to process image, res = %d\n", res);
continue;
}
slot.n_past += n_pos;
// slot.n_prompt_tokens_processed += n_pos;
}
LOG_VERBOSE("prompt ingested", {
{"n_past", slot.n_past},
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
{"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
});
const bool has_images = process_images(slot);
// process the prefix of first image
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
int32_t ga_i = slot.ga_i;
int32_t ga_n = slot.ga_n;
@ -1923,19 +1754,6 @@ struct llama_server_context
slot_npast++;
}
if (has_images && !ingest_images(slot, n_batch))
{
LOG_ERR("%s: failed processing images Slot id : %d, Task id: %d",
__func__,
slot.id,
slot.task_id
);
// FIXME @phymbert: to be properly tested
// early returning without changing the slot state will block the slot for ever
// no one at the moment is checking the return value
return false;
}
// extract the logits only for the last token
if (batch.n_tokens > 0)
{
@ -2164,26 +1982,6 @@ static void start_llama_server() {
json parse_options(bool streaming, const backend::PredictOptions* predict, llama_server_context &llama)
{
// This is for example a slot data from the json data
// slot->params.stream = json_value(data, "stream", false);
// slot->params.cache_prompt = json_value(data, "cache_prompt", false);
// slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
// slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
// slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
// slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
// slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
// slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
// slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
// slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
// slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
// slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
// slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
// slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
// slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
// slot->params.seed = json_value(data, "seed", default_params.seed);
// slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
// slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
// Create now a json data from the prediction options instead
//
json data;
@ -2228,69 +2026,6 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
return data;
}
// static void parse_options_completion(bool streaming,const backend::PredictOptions* predict, llama_server_context &llama)
// {
// // https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L673
// gpt_params default_params;
// llama.stream = streaming;
// llama.params.n_predict = predict->tokens() == 0 ? -1 : predict->tokens();
// llama.params.sparams.top_k = predict->topk();
// llama.params.sparams.top_p = predict->topp();
// llama.params.sparams.typical_p = predict->typicalp();
// llama.params.sparams.penalty_last_n = predict->repeat();
// llama.params.sparams.temp = predict->temperature();
// llama.params.sparams.penalty_repeat = predict->penalty();
// llama.params.sparams.penalty_present = predict->presencepenalty();
// llama.params.sparams.penalty_freq = predict->frequencypenalty();
// llama.params.sparams.mirostat = predict->mirostat();
// llama.params.sparams.mirostat_tau = predict->mirostattau();
// llama.params.sparams.mirostat_eta = predict->mirostateta();
// llama.params.n_keep = predict->nkeep();
// llama.params.seed = predict->seed();
// llama.params.sparams.grammar = predict->grammar();
// // llama.params.n_probs = predict->
// llama.params.prompt = predict->prompt();
// llama.params.sparams.logit_bias.clear();
// if (predict->ignoreeos())
// {
// llama.params.sparams.logit_bias[llama_token_eos(llama.model)] = -INFINITY;
// }
// // const auto &logit_bias = body.find("logit_bias");
// // if (logit_bias != body.end() && logit_bias->is_array())
// // {
// // const int n_vocab = llama_n_vocab(llama.model);
// // for (const auto &el : *logit_bias)
// // {
// // if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
// // {
// // llama_token tok = el[0].get<llama_token>();
// // if (tok >= 0 && tok < n_vocab)
// // {
// // if (el[1].is_number())
// // {
// // llama.params.logit_bias[tok] = el[1].get<float>();
// // }
// // else if (el[1].is_boolean() && !el[1].get<bool>())
// // {
// // llama.params.logit_bias[tok] = -INFINITY;
// // }
// // }
// // }
// // }
// // }
// llama.params.antiprompt.clear();
// for (const std::string& stopPrompt : predict->stopprompts()) {
// if (!stopPrompt.empty())
// {
// llama.params.antiprompt.push_back(stopPrompt);
// }
// }
// }
const std::vector<ggml_type> kv_cache_types = {
GGML_TYPE_F32,
@ -2603,10 +2338,10 @@ public:
grpc::Status TokenizeString(ServerContext* context, const backend::PredictOptions* request, backend::TokenizationResponse* response){
json data = parse_options(false, request, llama);
std::vector<llama_token> tokens = llama.tokenize(data["prompt"],false);
std::vector<server_tokens> tokens = llama.tokenize(data, data["prompt"],false);
for (int i=0 ; i< tokens.size(); i++){
response->add_tokens(tokens[i]);
response->add_tokens(tokens[i].llama_token);
}
return grpc::Status::OK;