feat(transformers): support also text generation (#1630)

* feat(transformers): support also text generation

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* embedded: set seed -1

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2024-01-23 23:07:31 +01:00 committed by GitHub
parent d5d82ba344
commit 5e335eaead
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 51 additions and 8 deletions

View file

@ -15,7 +15,7 @@ import backend_pb2_grpc
import grpc
import torch
import torch.cuda
from transformers import AutoTokenizer, AutoModel
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
@ -70,14 +70,10 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
try:
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=True) # trust_remote_code is needed to use the encode method with embeddings models like jinai-v2
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
if request.CUDA:
if request.CUDA or torch.cuda.is_available():
try:
# TODO: also tensorflow, make configurable
import torch.cuda
if torch.cuda.is_available():
print("Loading model", model_name, "to CUDA.", file=sys.stderr)
self.model = self.model.to("cuda")
print("Loading model", model_name, "to CUDA.", file=sys.stderr)
self.model = self.model.to("cuda")
except Exception as err:
print("Not using CUDA:", err, file=sys.stderr)
except Exception as err:
@ -113,6 +109,47 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
print("Embeddings:", sentence_embeddings, file=sys.stderr)
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings)
def Predict(self, request, context):
"""
Generates text based on the given prompt and sampling parameters.
Args:
request: The predict request.
context: The gRPC context.
Returns:
backend_pb2.Reply: The predict result.
"""
if request.TopP == 0:
request.TopP = 0.9
max_tokens = 200
if request.Tokens > 0:
max_tokens = request.Tokens
inputs = self.tokenizer.tokenizer(request.Prompt, return_tensors="pt").input_ids
outputs = self.model.generate(inputs,max_tokens=max_tokens, temperature=request.Temperature, top_p=request.TopP)
generated_text = self.tokenizer.tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
# Remove prompt from response if present
if request.Prompt in generated_text:
generated_text = generated_text.replace(request.Prompt, "")
return backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
def PredictStream(self, request, context):
"""
Generates text based on the given prompt and sampling parameters, and streams the results.
Args:
request: The predict stream request.
context: The gRPC context.
Returns:
backend_pb2.Result: The predict stream result.
"""
yield self.Predict(request, context)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))