mirror of
https://github.com/mudler/LocalAI.git
synced 2025-05-20 10:35:01 +00:00
examples: add langchain-chroma example (#248)
This commit is contained in:
parent
2488c445b6
commit
557ccc5ad8
9 changed files with 152 additions and 1 deletions
28
examples/langchain-chroma/store.py
Executable file
28
examples/langchain-chroma/store.py
Executable file
|
@ -0,0 +1,28 @@
|
|||
|
||||
import os
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter,TokenTextSplitter,CharacterTextSplitter
|
||||
from langchain.llms import OpenAI
|
||||
from langchain.chains import VectorDBQA
|
||||
from langchain.document_loaders import TextLoader
|
||||
|
||||
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
|
||||
|
||||
# Load and process the text
|
||||
loader = TextLoader('state_of_the_union.txt')
|
||||
documents = loader.load()
|
||||
|
||||
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=70)
|
||||
#text_splitter = TokenTextSplitter()
|
||||
texts = text_splitter.split_documents(documents)
|
||||
|
||||
# Embed and store the texts
|
||||
# Supplying a persist_directory will store the embeddings on disk
|
||||
persist_directory = 'db'
|
||||
|
||||
embedding = OpenAIEmbeddings(model="text-embedding-ada-002")
|
||||
vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory)
|
||||
|
||||
vectordb.persist()
|
||||
vectordb = None
|
Loading…
Add table
Add a link
Reference in a new issue