mirror of
https://github.com/mudler/LocalAI.git
synced 2025-05-20 10:35:01 +00:00
docs: fix langchain-chroma example (#298)
Signed-off-by: Tyler Gillson <tyler.gillson@gmail.com>
This commit is contained in:
parent
5a6d9d4e5b
commit
549a01b62e
9 changed files with 55 additions and 10 deletions
13
.vscode/launch.json
vendored
13
.vscode/launch.json
vendored
|
@ -1,6 +1,19 @@
|
||||||
{
|
{
|
||||||
"version": "0.2.0",
|
"version": "0.2.0",
|
||||||
"configurations": [
|
"configurations": [
|
||||||
|
{
|
||||||
|
"name": "Python: Current File",
|
||||||
|
"type": "python",
|
||||||
|
"request": "launch",
|
||||||
|
"program": "${file}",
|
||||||
|
"console": "integratedTerminal",
|
||||||
|
"justMyCode": false,
|
||||||
|
"cwd": "${workspaceFolder}/examples/langchain-chroma",
|
||||||
|
"env": {
|
||||||
|
"OPENAI_API_BASE": "http://localhost:8080/v1",
|
||||||
|
"OPENAI_API_KEY": "abc"
|
||||||
|
}
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"name": "Launch Go",
|
"name": "Launch Go",
|
||||||
"type": "go",
|
"type": "go",
|
||||||
|
|
5
examples/langchain-chroma/.env.example
Normal file
5
examples/langchain-chroma/.env.example
Normal file
|
@ -0,0 +1,5 @@
|
||||||
|
THREADS=4
|
||||||
|
CONTEXT_SIZE=512
|
||||||
|
MODELS_PATH=/models
|
||||||
|
DEBUG=true
|
||||||
|
# BUILD_TYPE=generic
|
4
examples/langchain-chroma/.gitignore
vendored
Normal file
4
examples/langchain-chroma/.gitignore
vendored
Normal file
|
@ -0,0 +1,4 @@
|
||||||
|
db/
|
||||||
|
state_of_the_union.txt
|
||||||
|
models/bert
|
||||||
|
models/ggml-gpt4all-j
|
|
@ -10,13 +10,20 @@ Download the models and start the API:
|
||||||
# Clone LocalAI
|
# Clone LocalAI
|
||||||
git clone https://github.com/go-skynet/LocalAI
|
git clone https://github.com/go-skynet/LocalAI
|
||||||
|
|
||||||
cd LocalAI/examples/query_data
|
cd LocalAI/examples/langchain-chroma
|
||||||
|
|
||||||
wget https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-q4_0.bin -O models/bert
|
wget https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-q4_0.bin -O models/bert
|
||||||
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
|
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
|
||||||
|
|
||||||
|
# configure your .env
|
||||||
|
# NOTE: ensure that THREADS does not exceed your machine's CPU cores
|
||||||
|
mv .env.example .env
|
||||||
|
|
||||||
# start with docker-compose
|
# start with docker-compose
|
||||||
docker-compose up -d --build
|
docker-compose up -d --build
|
||||||
|
|
||||||
|
# tail the logs & wait until the build completes
|
||||||
|
docker logs -f langchain-chroma-api-1
|
||||||
```
|
```
|
||||||
|
|
||||||
### Python requirements
|
### Python requirements
|
||||||
|
@ -37,7 +44,7 @@ wget https://raw.githubusercontent.com/hwchase17/chat-your-data/master/state_of_
|
||||||
python store.py
|
python store.py
|
||||||
```
|
```
|
||||||
|
|
||||||
After it finishes, a directory "storage" will be created with the vector index database.
|
After it finishes, a directory "db" will be created with the vector index database.
|
||||||
|
|
||||||
## Query
|
## Query
|
||||||
|
|
||||||
|
|
15
examples/langchain-chroma/docker-compose.yml
Normal file
15
examples/langchain-chroma/docker-compose.yml
Normal file
|
@ -0,0 +1,15 @@
|
||||||
|
version: '3.6'
|
||||||
|
|
||||||
|
services:
|
||||||
|
api:
|
||||||
|
image: quay.io/go-skynet/local-ai:latest
|
||||||
|
build:
|
||||||
|
context: ../../
|
||||||
|
dockerfile: Dockerfile
|
||||||
|
ports:
|
||||||
|
- 8080:8080
|
||||||
|
env_file:
|
||||||
|
- ../../.env
|
||||||
|
volumes:
|
||||||
|
- ./models:/models:cached
|
||||||
|
command: ["/usr/bin/local-ai"]
|
|
@ -1,5 +1,6 @@
|
||||||
name: text-embedding-ada-002
|
name: text-embedding-ada-002
|
||||||
parameters:
|
parameters:
|
||||||
model: bert
|
model: bert
|
||||||
|
threads: 4
|
||||||
backend: bert-embeddings
|
backend: bert-embeddings
|
||||||
embeddings: true
|
embeddings: true
|
||||||
|
|
|
@ -2,8 +2,9 @@
|
||||||
import os
|
import os
|
||||||
from langchain.vectorstores import Chroma
|
from langchain.vectorstores import Chroma
|
||||||
from langchain.embeddings import OpenAIEmbeddings
|
from langchain.embeddings import OpenAIEmbeddings
|
||||||
from langchain.llms import OpenAI
|
from langchain.chat_models import ChatOpenAI
|
||||||
from langchain.chains import VectorDBQA
|
from langchain.chains import RetrievalQA
|
||||||
|
from langchain.vectorstores.base import VectorStoreRetriever
|
||||||
|
|
||||||
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
|
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
|
||||||
|
|
||||||
|
@ -12,8 +13,10 @@ embedding = OpenAIEmbeddings()
|
||||||
persist_directory = 'db'
|
persist_directory = 'db'
|
||||||
|
|
||||||
# Now we can load the persisted database from disk, and use it as normal.
|
# Now we can load the persisted database from disk, and use it as normal.
|
||||||
|
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path)
|
||||||
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
|
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
|
||||||
qa = VectorDBQA.from_chain_type(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path), chain_type="stuff", vectorstore=vectordb)
|
retriever = VectorStoreRetriever(vectorstore=vectordb)
|
||||||
|
qa = RetrievalQA.from_llm(llm=llm, retriever=retriever)
|
||||||
|
|
||||||
query = "What the president said about taxes ?"
|
query = "What the president said about taxes ?"
|
||||||
print(qa.run(query))
|
print(qa.run(query))
|
||||||
|
|
|
@ -2,9 +2,7 @@
|
||||||
import os
|
import os
|
||||||
from langchain.vectorstores import Chroma
|
from langchain.vectorstores import Chroma
|
||||||
from langchain.embeddings import OpenAIEmbeddings
|
from langchain.embeddings import OpenAIEmbeddings
|
||||||
from langchain.text_splitter import RecursiveCharacterTextSplitter,TokenTextSplitter,CharacterTextSplitter
|
from langchain.text_splitter import CharacterTextSplitter
|
||||||
from langchain.llms import OpenAI
|
|
||||||
from langchain.chains import VectorDBQA
|
|
||||||
from langchain.document_loaders import TextLoader
|
from langchain.document_loaders import TextLoader
|
||||||
|
|
||||||
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
|
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
|
||||||
|
@ -14,7 +12,6 @@ loader = TextLoader('state_of_the_union.txt')
|
||||||
documents = loader.load()
|
documents = loader.load()
|
||||||
|
|
||||||
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=70)
|
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=70)
|
||||||
#text_splitter = TokenTextSplitter()
|
|
||||||
texts = text_splitter.split_documents(documents)
|
texts = text_splitter.split_documents(documents)
|
||||||
|
|
||||||
# Embed and store the texts
|
# Embed and store the texts
|
||||||
|
|
|
@ -4,7 +4,7 @@ services:
|
||||||
api:
|
api:
|
||||||
image: quay.io/go-skynet/local-ai:latest
|
image: quay.io/go-skynet/local-ai:latest
|
||||||
build:
|
build:
|
||||||
context: .
|
context: ../../
|
||||||
dockerfile: Dockerfile
|
dockerfile: Dockerfile
|
||||||
ports:
|
ports:
|
||||||
- 8080:8080
|
- 8080:8080
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue