docs: fix langchain-chroma example (#298)

Signed-off-by: Tyler Gillson <tyler.gillson@gmail.com>
This commit is contained in:
Tyler Gillson 2023-05-18 13:50:21 -07:00 committed by GitHub
parent 5a6d9d4e5b
commit 549a01b62e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 55 additions and 10 deletions

View file

@ -2,8 +2,9 @@
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.chains import VectorDBQA
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.vectorstores.base import VectorStoreRetriever
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
@ -12,8 +13,10 @@ embedding = OpenAIEmbeddings()
persist_directory = 'db'
# Now we can load the persisted database from disk, and use it as normal.
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path)
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
qa = VectorDBQA.from_chain_type(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path), chain_type="stuff", vectorstore=vectordb)
retriever = VectorStoreRetriever(vectorstore=vectordb)
qa = RetrievalQA.from_llm(llm=llm, retriever=retriever)
query = "What the president said about taxes ?"
print(qa.run(query))