mirror of
https://github.com/mudler/LocalAI.git
synced 2025-05-20 10:35:01 +00:00
docs: fix langchain-chroma example (#298)
Signed-off-by: Tyler Gillson <tyler.gillson@gmail.com>
This commit is contained in:
parent
5a6d9d4e5b
commit
549a01b62e
9 changed files with 55 additions and 10 deletions
|
@ -2,8 +2,9 @@
|
|||
import os
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.llms import OpenAI
|
||||
from langchain.chains import VectorDBQA
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.chains import RetrievalQA
|
||||
from langchain.vectorstores.base import VectorStoreRetriever
|
||||
|
||||
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
|
||||
|
||||
|
@ -12,8 +13,10 @@ embedding = OpenAIEmbeddings()
|
|||
persist_directory = 'db'
|
||||
|
||||
# Now we can load the persisted database from disk, and use it as normal.
|
||||
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path)
|
||||
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
|
||||
qa = VectorDBQA.from_chain_type(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path), chain_type="stuff", vectorstore=vectordb)
|
||||
retriever = VectorStoreRetriever(vectorstore=vectordb)
|
||||
qa = RetrievalQA.from_llm(llm=llm, retriever=retriever)
|
||||
|
||||
query = "What the president said about taxes ?"
|
||||
print(qa.run(query))
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue