feat: rebrand - LocalAGI and LocalRecall joins the LocalAI stack family (#5159)

* wip

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* docs

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Update lotusdocs and hugo

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* rephrasing

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* fixups

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Latest fixups

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Adjust readme section

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2025-04-15 17:51:24 +02:00 committed by GitHub
parent 04d74ac648
commit 4f239bac89
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
44 changed files with 976 additions and 196 deletions

View file

@ -13,6 +13,8 @@ LocalAI supports two modes of distributed inferencing via p2p:
- **Federated Mode**: Requests are shared between the cluster and routed to a single worker node in the network based on the load balancer's decision.
- **Worker Mode** (aka "model sharding" or "splitting weights"): Requests are processed by all the workers which contributes to the final inference result (by sharing the model weights).
A list of global instances shared by the community is available at [explorer.localai.io](https://explorer.localai.io).
## Usage
Starting LocalAI with `--p2p` generates a shared token for connecting multiple instances: and that's all you need to create AI clusters, eliminating the need for intricate network setups.

View file

@ -18,14 +18,45 @@ To access the WebUI with an API_KEY, browser extensions such as [Requestly](http
{{% /alert %}}
## Using the Bash Installer
## Quickstart
Install LocalAI easily using the bash installer with the following command:
```sh
### Using the Bash Installer
```bash
curl https://localai.io/install.sh | sh
```
### Run with docker:
```bash
# CPU only image:
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-cpu
# Nvidia GPU:
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-12
# CPU and GPU image (bigger size):
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest
# AIO images (it will pre-download a set of models ready for use, see https://localai.io/basics/container/)
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-cpu
```
### Load models:
```bash
# From the model gallery (see available models with `local-ai models list`, in the WebUI from the model tab, or visiting https://models.localai.io)
local-ai run llama-3.2-1b-instruct:q4_k_m
# Start LocalAI with the phi-2 model directly from huggingface
local-ai run huggingface://TheBloke/phi-2-GGUF/phi-2.Q8_0.gguf
# Install and run a model from the Ollama OCI registry
local-ai run ollama://gemma:2b
# Run a model from a configuration file
local-ai run https://gist.githubusercontent.com/.../phi-2.yaml
# Install and run a model from a standard OCI registry (e.g., Docker Hub)
local-ai run oci://localai/phi-2:latest
```
For a full list of options, refer to the [Installer Options]({{% relref "docs/advanced/installer" %}}) documentation.
Binaries can also be [manually downloaded]({{% relref "docs/reference/binaries" %}}).

View file

@ -1,4 +1,3 @@
+++
title = "Overview"
weight = 1
@ -7,162 +6,96 @@ description = "What is LocalAI?"
tags = ["Beginners"]
categories = [""]
author = "Ettore Di Giacinto"
# This allows to overwrite the landing page
url = '/'
icon = "info"
+++
<p align="center">
<a href="https://localai.io"><img width=512 src="https://github.com/go-skynet/LocalAI/assets/2420543/0966aa2a-166e-4f99-a3e5-6c915fc997dd"></a>
</p >
# Welcome to LocalAI
<p align="center">
<a href="https://github.com/go-skynet/LocalAI/fork" target="blank">
<img src="https://img.shields.io/github/forks/go-skynet/LocalAI?style=for-the-badge" alt="LocalAI forks"/>
</a>
<a href="https://github.com/go-skynet/LocalAI/stargazers" target="blank">
<img src="https://img.shields.io/github/stars/go-skynet/LocalAI?style=for-the-badge" alt="LocalAI stars"/>
</a>
<a href="https://github.com/go-skynet/LocalAI/pulls" target="blank">
<img src="https://img.shields.io/github/issues-pr/go-skynet/LocalAI?style=for-the-badge" alt="LocalAI pull-requests"/>
</a>
<a href='https://github.com/go-skynet/LocalAI/releases'>
<img src='https://img.shields.io/github/release/go-skynet/LocalAI?&label=Latest&style=for-the-badge'>
</a>
</p>
LocalAI is your complete AI stack for running AI models locally. It's designed to be simple, efficient, and accessible, providing a drop-in replacement for OpenAI's API while keeping your data private and secure.
<p align="center">
<a href="https://hub.docker.com/r/localai/localai" target="blank">
<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker" alt="LocalAI Docker hub"/>
</a>
<a href="https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest" target="blank">
<img src="https://img.shields.io/badge/quay.io-images-important.svg?" alt="LocalAI Quay.io"/>
</a>
</p>
## Why LocalAI?
<p align="center">
<a href="https://trendshift.io/repositories/5539" target="_blank"><img src="https://trendshift.io/api/badge/repositories/5539" alt="mudler%2FLocalAI | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</p>
In today's AI landscape, privacy, control, and flexibility are paramount. LocalAI addresses these needs by:
<p align="center">
<a href="https://twitter.com/LocalAI_API" target="blank">
<img src="https://img.shields.io/twitter/follow/LocalAI_API?label=Follow: LocalAI_API&style=social" alt="Follow LocalAI_API"/>
</a>
<a href="https://discord.gg/uJAeKSAGDy" target="blank">
<img src="https://dcbadge.vercel.app/api/server/uJAeKSAGDy?style=flat-square&theme=default-inverted" alt="Join LocalAI Discord Community"/>
</a>
</p>
- **Privacy First**: Your data never leaves your machine
- **Complete Control**: Run models on your terms, with your hardware
- **Open Source**: MIT licensed and community-driven
- **Flexible Deployment**: From laptops to servers, with or without GPUs
- **Extensible**: Add new models and features as needed
> 💡 Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [💭Discord](https://discord.gg/uJAeKSAGDy)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [🖼️ Models](https://models.localai.io/) [🚀 Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap) [🥽 Demo](https://demo.localai.io) [🌍 Explorer](https://explorer.localai.io) [🛫 Examples](https://github.com/go-skynet/LocalAI/tree/master/examples/)
## Core Components
LocalAI is more than just a single tool - it's a complete ecosystem:
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API that's compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families and architectures. Does not require GPU. It is created and maintained by [Ettore Di Giacinto](https://github.com/mudler).
1. **[LocalAI Core](https://github.com/mudler/LocalAI)**
- OpenAI-compatible API
- Multiple model support (LLMs, image, audio)
- No GPU required
- Fast inference with native bindings
- [Github repository](https://github.com/mudler/LocalAI)
2. **[LocalAGI](https://github.com/mudler/LocalAGI)**
- Autonomous AI agents
- No coding required
- WebUI and REST API support
- Extensible agent framework
- [Github repository](https://github.com/mudler/LocalAGI)
## Start LocalAI
3. **[LocalRecall](https://github.com/mudler/LocalRecall)**
- Semantic search
- Memory management
- Vector database
- Perfect for AI applications
- [Github repository](https://github.com/mudler/LocalRecall)
Start the image with Docker to have a functional clone of OpenAI! 🚀:
## Getting Started
```bash
docker run -p 8080:8080 --name local-ai -ti localai/localai:latest-aio-cpu
# Do you have a Nvidia GPUs? Use this instead
# CUDA 11
# docker run -p 8080:8080 --gpus all --name local-ai -ti localai/localai:latest-aio-gpu-nvidia-cuda-11
# CUDA 12
# docker run -p 8080:8080 --gpus all --name local-ai -ti localai/localai:latest-aio-gpu-nvidia-cuda-12
```
Or just use the bash installer:
The fastest way to get started is with our one-line installer:
```bash
curl https://localai.io/install.sh | sh
```
See the [💻 Quickstart](https://localai.io/basics/getting_started/) for all the options and way you can run LocalAI!
Or use Docker for a quick start:
## What is LocalAI?
```bash
docker run -p 8080:8080 --name local-ai -ti localai/localai:latest-aio-cpu
```
In a nutshell:
For more detailed installation options and configurations, see our [Getting Started guide](/basics/getting_started/).
- Local, OpenAI drop-in alternative REST API. You own your data.
- NO GPU required. NO Internet access is required either
- Optional, GPU Acceleration is available. See also the [build section](https://localai.io/basics/build/index.html).
- Supports multiple models
- 🏃 Once loaded the first time, it keep models loaded in memory for faster inference
- ⚡ Doesn't shell-out, but uses bindings for a faster inference and better performance.
## Key Features
LocalAI is focused on making the AI accessible to anyone. Any contribution, feedback and PR is welcome!
- **Text Generation**: Run various LLMs locally
- **Image Generation**: Create images with stable diffusion
- **Audio Processing**: Text-to-speech and speech-to-text
- **Vision API**: Image understanding and analysis
- **Embeddings**: Vector database support
- **Functions**: OpenAI-compatible function calling
- **P2P**: Distributed inference capabilities
Note that this started just as a fun weekend project by [mudler](https://github.com/mudler) in order to try to create the necessary pieces for a full AI assistant like `ChatGPT`: the community is growing fast and we are working hard to make it better and more stable. If you want to help, please consider contributing (see below)!
## Community and Support
### 🚀 Features
LocalAI is a community-driven project. You can:
- 📖 [Text generation with GPTs](https://localai.io/features/text-generation/) (`llama.cpp`, `gpt4all.cpp`, ... [:book: and more](https://localai.io/model-compatibility/index.html#model-compatibility-table))
- 🗣 [Text to Audio](https://localai.io/features/text-to-audio/)
- 🔈 [Audio to Text](https://localai.io/features/audio-to-text/) (Audio transcription with `whisper.cpp`)
- 🎨 [Image generation with stable diffusion](https://localai.io/features/image-generation)
- 🔥 [OpenAI functions](https://localai.io/features/openai-functions/) 🆕
- 🧠 [Embeddings generation for vector databases](https://localai.io/features/embeddings/)
- ✍️ [Constrained grammars](https://localai.io/features/constrained_grammars/)
- 🖼️ [Download Models directly from Huggingface ](https://localai.io/models/)
- 🥽 [Vision API](https://localai.io/features/gpt-vision/)
- 💾 [Stores](https://localai.io/stores)
- 📈 [Reranker](https://localai.io/features/reranker/)
- 🆕🖧 [P2P Inferencing](https://localai.io/features/distribute/)
- Join our [Discord community](https://discord.gg/uJAeKSAGDy)
- Check out our [GitHub repository](https://github.com/mudler/LocalAI)
- Contribute to the project
- Share your use cases and examples
## Contribute and help
## Next Steps
To help the project you can:
Ready to dive in? Here are some recommended next steps:
- If you have technological skills and want to contribute to development, have a look at the open issues. If you are new you can have a look at the [good-first-issue](https://github.com/go-skynet/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) and [help-wanted](https://github.com/go-skynet/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22) labels.
1. [Install LocalAI](/basics/getting_started/)
2. [Explore available models](https://models.localai.io)
3. [Model compatibility](/model-compatibility/)
4. [Try out examples](https://github.com/mudler/LocalAI-examples)
5. [Join the community](https://discord.gg/uJAeKSAGDy)
6. [Check the LocalAI Github repository](https://github.com/mudler/LocalAI)
7. [Check the LocalAGI Github repository](https://github.com/mudler/LocalAGI)
- If you don't have technological skills you can still help improving documentation or [add examples](https://github.com/go-skynet/LocalAI/tree/master/examples) or share your user-stories with our community, any help and contribution is welcome!
## 🌟 Star history
## License
[![LocalAI Star history Chart](https://api.star-history.com/svg?repos=mudler/LocalAI&type=Date)](https://star-history.com/#mudler/LocalAI&Date)
## ❤️ Sponsors
> Do you find LocalAI useful?
Support the project by becoming [a backer or sponsor](https://github.com/sponsors/mudler). Your logo will show up here with a link to your website.
A huge thank you to our generous sponsors who support this project covering CI expenses, and our [Sponsor list](https://github.com/sponsors/mudler):
<p align="center">
<a href="https://www.spectrocloud.com/" target="blank">
<img width=200 src="https://github.com/user-attachments/assets/72eab1dd-8b93-4fc0-9ade-84db49f24962">
</a>
<a href="https://www.premai.io/" target="blank">
<img width=200 src="https://github.com/mudler/LocalAI/assets/2420543/42e4ca83-661e-4f79-8e46-ae43689683d6"> <br>
</a>
</p>
## 📖 License
LocalAI is a community-driven project created by [Ettore Di Giacinto](https://github.com/mudler/).
MIT - Author Ettore Di Giacinto
## 🙇 Acknowledgements
LocalAI couldn't have been built without the help of great software already available from the community. Thank you!
- [llama.cpp](https://github.com/ggerganov/llama.cpp)
- https://github.com/tatsu-lab/stanford_alpaca
- https://github.com/cornelk/llama-go for the initial ideas
- https://github.com/antimatter15/alpaca.cpp
- https://github.com/EdVince/Stable-Diffusion-NCNN
- https://github.com/ggerganov/whisper.cpp
- https://github.com/saharNooby/rwkv.cpp
- https://github.com/rhasspy/piper
## 🤗 Contributors
This is a community project, a special thanks to our contributors! 🤗
<a href="https://github.com/go-skynet/LocalAI/graphs/contributors">
<img src="https://contrib.rocks/image?repo=go-skynet/LocalAI" />
</a>
LocalAI is MIT licensed, created and maintained by [Ettore Di Giacinto](https://github.com/mudler).