feat: Centralized Request Processing middleware (#3847)

* squash past, centralize request middleware PR

Signed-off-by: Dave Lee <dave@gray101.com>

* migrate bruno request files to examples repo

Signed-off-by: Dave Lee <dave@gray101.com>

* fix

Signed-off-by: Dave Lee <dave@gray101.com>

* Update tests/e2e-aio/e2e_test.go

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

---------

Signed-off-by: Dave Lee <dave@gray101.com>
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
This commit is contained in:
Dave 2025-02-10 06:06:16 -05:00 committed by GitHub
parent c330360785
commit 3cddf24747
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
53 changed files with 240975 additions and 821 deletions

View file

@ -33,7 +33,7 @@ type TokenUsage struct {
TimingTokenGeneration float64
}
func ModelInference(ctx context.Context, s string, messages []schema.Message, images, videos, audios []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
func ModelInference(ctx context.Context, s string, messages []schema.Message, images, videos, audios []string, loader *model.ModelLoader, c *config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
modelFile := c.Model
// Check if the modelFile exists, if it doesn't try to load it from the gallery
@ -48,7 +48,7 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
}
}
opts := ModelOptions(c, o)
opts := ModelOptions(*c, o)
inferenceModel, err := loader.Load(opts...)
if err != nil {
return nil, err
@ -84,7 +84,7 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
fn := func() (LLMResponse, error) {
opts := gRPCPredictOpts(c, loader.ModelPath)
opts := gRPCPredictOpts(*c, loader.ModelPath)
opts.Prompt = s
opts.Messages = protoMessages
opts.UseTokenizerTemplate = c.TemplateConfig.UseTokenizerTemplate

View file

@ -9,10 +9,10 @@ import (
model "github.com/mudler/LocalAI/pkg/model"
)
func Rerank(modelFile string, request *proto.RerankRequest, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig config.BackendConfig) (*proto.RerankResult, error) {
opts := ModelOptions(backendConfig, appConfig, model.WithModel(modelFile))
func Rerank(request *proto.RerankRequest, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig config.BackendConfig) (*proto.RerankResult, error) {
opts := ModelOptions(backendConfig, appConfig)
rerankModel, err := loader.Load(opts...)
if err != nil {
return nil, err
}

View file

@ -13,7 +13,6 @@ import (
)
func SoundGeneration(
modelFile string,
text string,
duration *float32,
temperature *float32,
@ -25,8 +24,9 @@ func SoundGeneration(
backendConfig config.BackendConfig,
) (string, *proto.Result, error) {
opts := ModelOptions(backendConfig, appConfig, model.WithModel(modelFile))
opts := ModelOptions(backendConfig, appConfig)
soundGenModel, err := loader.Load(opts...)
if err != nil {
return "", nil, err
}
@ -44,7 +44,7 @@ func SoundGeneration(
res, err := soundGenModel.SoundGeneration(context.Background(), &proto.SoundGenerationRequest{
Text: text,
Model: modelFile,
Model: backendConfig.Model,
Dst: filePath,
Sample: doSample,
Duration: duration,

View file

@ -4,19 +4,17 @@ import (
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/grpc"
model "github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/LocalAI/pkg/model"
)
func ModelTokenize(s string, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (schema.TokenizeResponse, error) {
modelFile := backendConfig.Model
var inferenceModel grpc.Backend
var err error
opts := ModelOptions(backendConfig, appConfig, model.WithModel(modelFile))
opts := ModelOptions(backendConfig, appConfig)
inferenceModel, err = loader.Load(opts...)
if err != nil {
return schema.TokenizeResponse{}, err
}

View file

@ -47,7 +47,7 @@ func ModelTranscription(audio, language string, translate bool, ml *model.ModelL
tks = append(tks, int(t))
}
tr.Segments = append(tr.Segments,
schema.Segment{
schema.TranscriptionSegment{
Text: s.Text,
Id: int(s.Id),
Start: time.Duration(s.Start),

View file

@ -14,28 +14,22 @@ import (
)
func ModelTTS(
backend,
text,
modelFile,
voice,
language string,
loader *model.ModelLoader,
appConfig *config.ApplicationConfig,
backendConfig config.BackendConfig,
) (string, *proto.Result, error) {
bb := backend
if bb == "" {
bb = model.PiperBackend
}
opts := ModelOptions(backendConfig, appConfig, model.WithBackendString(bb), model.WithModel(modelFile))
opts := ModelOptions(backendConfig, appConfig, model.WithDefaultBackendString(model.PiperBackend))
ttsModel, err := loader.Load(opts...)
if err != nil {
return "", nil, err
}
if ttsModel == nil {
return "", nil, fmt.Errorf("could not load piper model")
return "", nil, fmt.Errorf("could not load tts model %q", backendConfig.Model)
}
if err := os.MkdirAll(appConfig.AudioDir, 0750); err != nil {
@ -45,22 +39,21 @@ func ModelTTS(
fileName := utils.GenerateUniqueFileName(appConfig.AudioDir, "tts", ".wav")
filePath := filepath.Join(appConfig.AudioDir, fileName)
// If the model file is not empty, we pass it joined with the model path
// We join the model name to the model path here. This seems to only be done for TTS and is HIGHLY suspect.
// This should be addressed in a follow up PR soon.
// Copying it over nearly verbatim, as TTS backends are not functional without this.
modelPath := ""
if modelFile != "" {
// If the model file is not empty, we pass it joined with the model path
// Checking first that it exists and is not outside ModelPath
// TODO: we should actually first check if the modelFile is looking like
// a FS path
mp := filepath.Join(loader.ModelPath, modelFile)
if _, err := os.Stat(mp); err == nil {
if err := utils.VerifyPath(mp, appConfig.ModelPath); err != nil {
return "", nil, err
}
modelPath = mp
} else {
modelPath = modelFile
// Checking first that it exists and is not outside ModelPath
// TODO: we should actually first check if the modelFile is looking like
// a FS path
mp := filepath.Join(loader.ModelPath, backendConfig.Model)
if _, err := os.Stat(mp); err == nil {
if err := utils.VerifyPath(mp, appConfig.ModelPath); err != nil {
return "", nil, err
}
modelPath = mp
} else {
modelPath = backendConfig.Model // skip this step if it fails?????
}
res, err := ttsModel.TTS(context.Background(), &proto.TTSRequest{

38
core/backend/vad.go Normal file
View file

@ -0,0 +1,38 @@
package backend
import (
"context"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/model"
)
func VAD(request *schema.VADRequest,
ctx context.Context,
ml *model.ModelLoader,
appConfig *config.ApplicationConfig,
backendConfig config.BackendConfig) (*schema.VADResponse, error) {
opts := ModelOptions(backendConfig, appConfig)
vadModel, err := ml.Load(opts...)
if err != nil {
return nil, err
}
req := proto.VADRequest{
Audio: request.Audio,
}
resp, err := vadModel.VAD(ctx, &req)
if err != nil {
return nil, err
}
segments := []schema.VADSegment{}
for _, s := range resp.Segments {
segments = append(segments, schema.VADSegment{Start: s.Start, End: s.End})
}
return &schema.VADResponse{
Segments: segments,
}, nil
}