feat(loader): enhance single active backend by treating as singleton (#5107)

feat(loader): enhance single active backend by treating at singleton

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2025-04-01 20:58:11 +02:00 committed by GitHub
parent c59975ab05
commit 2c425e9c69
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
24 changed files with 92 additions and 71 deletions

View file

@ -17,6 +17,7 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, backendCo
if err != nil {
return nil, err
}
defer loader.Close()
var fn func() ([]float32, error)
switch model := inferenceModel.(type) {

View file

@ -16,6 +16,7 @@ func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negat
if err != nil {
return nil, err
}
defer loader.Close()
fn := func() error {
_, err := inferenceModel.GenerateImage(

View file

@ -53,6 +53,7 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
if err != nil {
return nil, err
}
defer loader.Close()
var protoMessages []*proto.Message
// if we are using the tokenizer template, we need to convert the messages to proto messages

View file

@ -40,10 +40,6 @@ func ModelOptions(c config.BackendConfig, so *config.ApplicationConfig, opts ...
grpcOpts := grpcModelOpts(c)
defOpts = append(defOpts, model.WithLoadGRPCLoadModelOpts(grpcOpts))
if so.SingleBackend {
defOpts = append(defOpts, model.WithSingleActiveBackend())
}
if so.ParallelBackendRequests {
defOpts = append(defOpts, model.EnableParallelRequests)
}
@ -121,7 +117,7 @@ func grpcModelOpts(c config.BackendConfig) *pb.ModelOptions {
triggers := make([]*pb.GrammarTrigger, 0)
for _, t := range c.FunctionsConfig.GrammarConfig.GrammarTriggers {
triggers = append(triggers, &pb.GrammarTrigger{
Word: t.Word,
Word: t.Word,
})
}
@ -161,33 +157,33 @@ func grpcModelOpts(c config.BackendConfig) *pb.ModelOptions {
DisableLogStatus: c.DisableLogStatus,
DType: c.DType,
// LimitMMPerPrompt vLLM
LimitImagePerPrompt: int32(c.LimitMMPerPrompt.LimitImagePerPrompt),
LimitVideoPerPrompt: int32(c.LimitMMPerPrompt.LimitVideoPerPrompt),
LimitAudioPerPrompt: int32(c.LimitMMPerPrompt.LimitAudioPerPrompt),
MMProj: c.MMProj,
FlashAttention: c.FlashAttention,
CacheTypeKey: c.CacheTypeK,
CacheTypeValue: c.CacheTypeV,
NoKVOffload: c.NoKVOffloading,
YarnExtFactor: c.YarnExtFactor,
YarnAttnFactor: c.YarnAttnFactor,
YarnBetaFast: c.YarnBetaFast,
YarnBetaSlow: c.YarnBetaSlow,
NGQA: c.NGQA,
RMSNormEps: c.RMSNormEps,
MLock: mmlock,
RopeFreqBase: c.RopeFreqBase,
RopeScaling: c.RopeScaling,
Type: c.ModelType,
RopeFreqScale: c.RopeFreqScale,
NUMA: c.NUMA,
Embeddings: embeddings,
LowVRAM: lowVRAM,
NGPULayers: int32(nGPULayers),
MMap: mmap,
MainGPU: c.MainGPU,
Threads: int32(*c.Threads),
TensorSplit: c.TensorSplit,
LimitImagePerPrompt: int32(c.LimitMMPerPrompt.LimitImagePerPrompt),
LimitVideoPerPrompt: int32(c.LimitMMPerPrompt.LimitVideoPerPrompt),
LimitAudioPerPrompt: int32(c.LimitMMPerPrompt.LimitAudioPerPrompt),
MMProj: c.MMProj,
FlashAttention: c.FlashAttention,
CacheTypeKey: c.CacheTypeK,
CacheTypeValue: c.CacheTypeV,
NoKVOffload: c.NoKVOffloading,
YarnExtFactor: c.YarnExtFactor,
YarnAttnFactor: c.YarnAttnFactor,
YarnBetaFast: c.YarnBetaFast,
YarnBetaSlow: c.YarnBetaSlow,
NGQA: c.NGQA,
RMSNormEps: c.RMSNormEps,
MLock: mmlock,
RopeFreqBase: c.RopeFreqBase,
RopeScaling: c.RopeScaling,
Type: c.ModelType,
RopeFreqScale: c.RopeFreqScale,
NUMA: c.NUMA,
Embeddings: embeddings,
LowVRAM: lowVRAM,
NGPULayers: int32(nGPULayers),
MMap: mmap,
MainGPU: c.MainGPU,
Threads: int32(*c.Threads),
TensorSplit: c.TensorSplit,
// AutoGPTQ
ModelBaseName: c.AutoGPTQ.ModelBaseName,
Device: c.AutoGPTQ.Device,

View file

@ -12,10 +12,10 @@ import (
func Rerank(request *proto.RerankRequest, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig config.BackendConfig) (*proto.RerankResult, error) {
opts := ModelOptions(backendConfig, appConfig)
rerankModel, err := loader.Load(opts...)
if err != nil {
return nil, err
}
defer loader.Close()
if rerankModel == nil {
return nil, fmt.Errorf("could not load rerank model")

View file

@ -26,10 +26,10 @@ func SoundGeneration(
opts := ModelOptions(backendConfig, appConfig)
soundGenModel, err := loader.Load(opts...)
if err != nil {
return "", nil, err
}
defer loader.Close()
if soundGenModel == nil {
return "", nil, fmt.Errorf("could not load sound generation model")

View file

@ -20,6 +20,7 @@ func TokenMetrics(
if err != nil {
return nil, err
}
defer loader.Close()
if model == nil {
return nil, fmt.Errorf("could not loadmodel model")

View file

@ -14,10 +14,10 @@ func ModelTokenize(s string, loader *model.ModelLoader, backendConfig config.Bac
opts := ModelOptions(backendConfig, appConfig)
inferenceModel, err = loader.Load(opts...)
if err != nil {
return schema.TokenizeResponse{}, err
}
defer loader.Close()
predictOptions := gRPCPredictOpts(backendConfig, loader.ModelPath)
predictOptions.Prompt = s

View file

@ -24,6 +24,7 @@ func ModelTranscription(audio, language string, translate bool, ml *model.ModelL
if err != nil {
return nil, err
}
defer ml.Close()
if transcriptionModel == nil {
return nil, fmt.Errorf("could not load transcription model")

View file

@ -23,10 +23,10 @@ func ModelTTS(
) (string, *proto.Result, error) {
opts := ModelOptions(backendConfig, appConfig, model.WithDefaultBackendString(model.PiperBackend))
ttsModel, err := loader.Load(opts...)
if err != nil {
return "", nil, err
}
defer loader.Close()
if ttsModel == nil {
return "", nil, fmt.Errorf("could not load tts model %q", backendConfig.Model)

View file

@ -19,6 +19,8 @@ func VAD(request *schema.VADRequest,
if err != nil {
return nil, err
}
defer ml.Close()
req := proto.VADRequest{
Audio: request.Audio,
}