docs: add fine-tuning example (#1374)

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2023-12-01 19:11:45 +01:00 committed by GitHub
parent e94a34be8c
commit 2b2007ae9e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 1969 additions and 15 deletions

View file

@ -41,6 +41,14 @@ This example show how to use LocalAI inside Kubernetes with [k8sgpt](https://k8s
![Screenshot from 2023-06-19 23-58-47](https://github.com/go-skynet/go-ggml-transformers.cpp/assets/2420543/cab87409-ee68-44ae-8d53-41627fb49509)
### Fine-tuning a model and convert it to gguf to use it with LocalAI
_by [@mudler](https://github.com/mudler)_
This example is an e2e example on how to fine-tune a model with [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) and convert it to gguf to use it with LocalAI.
[Check it out here](https://github.com/mudler/LocalAI/tree/master/examples/e2e-fine-tuning/)
### Flowise
_by [@mudler](https://github.com/mudler)_

View file

@ -0,0 +1,83 @@
This is an example of fine-tuning a LLM model to use with [LocalAI](https://github/mudler/LocalAI) written by [@mudler](https://github.com/mudler).
Specifically, this example shows how to use [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) to fine-tune a LLM model to consume with LocalAI as a `gguf` model.
A notebook is provided that currently works on _very small_ datasets on Google colab on the free instance. It is far from producing good models, but it gives a sense of how to use the code to use with a better dataset and configurations, and how to use the model produced with LocalAI.
## Requirements
For this example you will need at least a 12GB VRAM of GPU and a Linux box.
The notebook is tested on Google Colab with a Tesla T4 GPU.
## Clone this directory
Clone the repository and enter the example directory:
```bash
git clone http://github.com/mudler/LocalAI
cd LocalAI/examples/e2e-fine-tuning
```
## Install dependencies
```bash
# Install axolotl and dependencies
git clone https://github.com/OpenAccess-AI-Collective/axolotl && pushd axolotl && git checkout 797f3dd1de8fd8c0eafbd1c9fdb172abd9ff840a && popd #0.3.0
pip install packaging
pushd axolotl && pip install -e '.[flash-attn,deepspeed]' && popd
# https://github.com/oobabooga/text-generation-webui/issues/4238
pip install https://github.com/Dao-AILab/flash-attention/releases/download/v2.3.0/flash_attn-2.3.0+cu117torch2.0cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
```
Configure accelerate:
```bash
accelerate config default
```
## Fine-tuning
We will need to configure axolotl. In this example is provided a file to use `axolotl.yaml` that uses openllama-3b for fine-tuning. Copy the `axolotl.yaml` file and edit it to your needs. The dataset needs to be next to it as `dataset.json`. The format used is `completion` which is a list of JSON objects with a `text` field with the full text to train the LLM with.
If you have a big dataset, you can pre-tokenize it to speedup the fine-tuning process:
```bash
# Optional pre-tokenize (run only if big dataset)
python -m axolotl.cli.preprocess axolotl.yaml
```
Now we are ready to start the fine-tuning process:
```bash
# Fine-tune
accelerate launch -m axolotl.cli.train axolotl.yaml
```
After we have finished the fine-tuning, we merge the Lora base with the model:
```bash
# Merge lora
python3 -m axolotl.cli.merge_lora axolotl.yaml --lora_model_dir="./qlora-out" --load_in_8bit=False --load_in_4bit=False
```
And we convert it to the gguf format that LocalAI can consume:
```bash
# Convert to gguf
git clone https://github.com/ggerganov/llama.cpp.git
pushd llama.cpp && make LLAMA_CUBLAS=1 && popd
# We need to convert the pytorch model into ggml for quantization
# It crates 'ggml-model-f16.bin' in the 'merged' directory.
pushd llama.cpp && python convert.py --outtype f16 \
../qlora-out/merged/pytorch_model-00001-of-00002.bin && popd
# Start off by making a basic q4_0 4-bit quantization.
# It's important to have 'ggml' in the name of the quant for some
# software to recognize it's file format.
pushd llama.cpp && ./quantize ../qlora-out/merged/ggml-model-f16.gguf \
../custom-model-q4_0.bin q4_0
```
Now you should have ended up with a `custom-model-q4_0.bin` file that you can copy in the LocalAI models directory and use it with LocalAI.

View file

@ -0,0 +1,63 @@
base_model: openlm-research/open_llama_3b_v2
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
push_dataset_to_hub: false
datasets:
- path: dataset.json
ds_type: json
type: completion
dataset_prepared_path:
val_set_size: 0.05
adapter: qlora
lora_model_dir:
sequence_len: 1024
sample_packing: true
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
output_dir: ./qlora-out
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: false
fp16: true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
gptq_groupsize:
gptq_model_v1:
warmup_steps: 20
eval_steps: 0.05
save_steps:
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"

File diff suppressed because it is too large Load diff