mirror of
https://github.com/mudler/LocalAI.git
synced 2025-05-20 10:35:01 +00:00
chianlit example (#1238)
This commit is contained in:
parent
035fea676a
commit
23c7fbfe6b
5 changed files with 146 additions and 0 deletions
16
examples/chainlit/Dockerfile
Normal file
16
examples/chainlit/Dockerfile
Normal file
|
@ -0,0 +1,16 @@
|
||||||
|
# Use an official Python runtime as a parent image
|
||||||
|
FROM harbor.home.sfxworks.net/docker/library/python:3.9-slim
|
||||||
|
|
||||||
|
# Set the working directory in the container
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Copy the current directory contents into the container at /app
|
||||||
|
COPY requirements.txt /app
|
||||||
|
|
||||||
|
# Install any needed packages specified in requirements.txt
|
||||||
|
RUN pip install -r requirements.txt
|
||||||
|
|
||||||
|
COPY . /app
|
||||||
|
|
||||||
|
# Run app.py when the container launches
|
||||||
|
CMD ["chainlit", "run", "-h", "--host", "0.0.0.0", "main.py" ]
|
25
examples/chainlit/README.md
Normal file
25
examples/chainlit/README.md
Normal file
|
@ -0,0 +1,25 @@
|
||||||
|
# LocalAI Demonstration with Embeddings and Chainlit
|
||||||
|
|
||||||
|
This demonstration shows you how to use embeddings with existing data in `LocalAI`, and how to integrate it with Chainlit for an interactive querying experience. We are using the `llama_index` library to facilitate the embedding and querying processes, and `chainlit` to provide an interactive interface. The `Weaviate` client is used as the embedding source.
|
||||||
|
|
||||||
|
## Prerequisites
|
||||||
|
|
||||||
|
Before proceeding, make sure you have the following installed:
|
||||||
|
- Weaviate client
|
||||||
|
- LocalAI and its dependencies
|
||||||
|
- Chainlit and its dependencies
|
||||||
|
|
||||||
|
## Getting Started
|
||||||
|
|
||||||
|
1. Clone this repository:
|
||||||
|
2. Navigate to the project directory:
|
||||||
|
3. Run the example: `chainlit run main.py`
|
||||||
|
|
||||||
|
# Highlight on `llama_index` and `chainlit`
|
||||||
|
|
||||||
|
`llama_index` is the key library that facilitates the process of embedding and querying data in LocalAI. It provides a seamless interface to integrate various components, such as `WeaviateVectorStore`, `LocalAI`, `ServiceContext`, and more, for a smooth querying experience.
|
||||||
|
|
||||||
|
`chainlit` is used to provide an interactive interface for users to query the data and see the results in real-time. It integrates with llama_index to handle the querying process and display the results to the user.
|
||||||
|
|
||||||
|
In this example, `llama_index` is used to set up the `VectorStoreIndex` and `QueryEngine`, and `chainlit` is used to handle the user interactions with `LocalAI` and display the results.
|
||||||
|
|
16
examples/chainlit/config.yaml
Normal file
16
examples/chainlit/config.yaml
Normal file
|
@ -0,0 +1,16 @@
|
||||||
|
localAI:
|
||||||
|
temperature: 0
|
||||||
|
modelName: gpt-3.5-turbo
|
||||||
|
apiBase: http://local-ai.default
|
||||||
|
apiKey: stub
|
||||||
|
streaming: True
|
||||||
|
weviate:
|
||||||
|
url: http://weviate.local
|
||||||
|
index: AIChroma
|
||||||
|
query:
|
||||||
|
mode: hybrid
|
||||||
|
topK: 1
|
||||||
|
alpha: 0.0
|
||||||
|
chunkSize: 1024
|
||||||
|
embedding:
|
||||||
|
model: BAAI/bge-small-en-v1.5
|
82
examples/chainlit/main.py
Normal file
82
examples/chainlit/main.py
Normal file
|
@ -0,0 +1,82 @@
|
||||||
|
import os
|
||||||
|
|
||||||
|
import weaviate
|
||||||
|
from llama_index.storage.storage_context import StorageContext
|
||||||
|
from llama_index.vector_stores import WeaviateVectorStore
|
||||||
|
|
||||||
|
from llama_index.query_engine.retriever_query_engine import RetrieverQueryEngine
|
||||||
|
from llama_index.callbacks.base import CallbackManager
|
||||||
|
from llama_index import (
|
||||||
|
LLMPredictor,
|
||||||
|
ServiceContext,
|
||||||
|
StorageContext,
|
||||||
|
VectorStoreIndex,
|
||||||
|
)
|
||||||
|
import chainlit as cl
|
||||||
|
|
||||||
|
from llama_index.llms import LocalAI
|
||||||
|
from llama_index.embeddings import HuggingFaceEmbedding
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
# Load the configuration file
|
||||||
|
with open("config.yaml", "r") as ymlfile:
|
||||||
|
cfg = yaml.safe_load(ymlfile)
|
||||||
|
|
||||||
|
# Get the values from the configuration file or set the default values
|
||||||
|
temperature = cfg['localAI'].get('temperature', 0)
|
||||||
|
model_name = cfg['localAI'].get('modelName', "gpt-3.5-turbo")
|
||||||
|
api_base = cfg['localAI'].get('apiBase', "http://local-ai.default")
|
||||||
|
api_key = cfg['localAI'].get('apiKey', "stub")
|
||||||
|
streaming = cfg['localAI'].get('streaming', True)
|
||||||
|
weaviate_url = cfg['weviate'].get('url', "http://weviate.default")
|
||||||
|
index_name = cfg['weviate'].get('index', "AIChroma")
|
||||||
|
query_mode = cfg['query'].get('mode', "hybrid")
|
||||||
|
topK = cfg['query'].get('topK', 1)
|
||||||
|
alpha = cfg['query'].get('alpha', 0.0)
|
||||||
|
embed_model_name = cfg['embedding'].get('model', "BAAI/bge-small-en-v1.5")
|
||||||
|
chunk_size = cfg['query'].get('chunkSize', 1024)
|
||||||
|
|
||||||
|
|
||||||
|
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
||||||
|
|
||||||
|
|
||||||
|
llm = LocalAI(temperature=temperature, model_name=model_name, api_base=api_base, api_key=api_key, streaming=streaming)
|
||||||
|
llm.globally_use_chat_completions = True;
|
||||||
|
client = weaviate.Client(weaviate_url)
|
||||||
|
vector_store = WeaviateVectorStore(weaviate_client=client, index_name=index_name)
|
||||||
|
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
||||||
|
|
||||||
|
@cl.on_chat_start
|
||||||
|
async def factory():
|
||||||
|
|
||||||
|
llm_predictor = LLMPredictor(
|
||||||
|
llm=llm
|
||||||
|
)
|
||||||
|
|
||||||
|
service_context = ServiceContext.from_defaults(embed_model=embed_model, callback_manager=CallbackManager([cl.LlamaIndexCallbackHandler()]), llm_predictor=llm_predictor, chunk_size=chunk_size)
|
||||||
|
|
||||||
|
index = VectorStoreIndex.from_vector_store(
|
||||||
|
vector_store,
|
||||||
|
storage_context=storage_context,
|
||||||
|
service_context=service_context
|
||||||
|
)
|
||||||
|
|
||||||
|
query_engine = index.as_query_engine(vector_store_query_mode=query_mode, similarity_top_k=topK, alpha=alpha, streaming=True)
|
||||||
|
|
||||||
|
cl.user_session.set("query_engine", query_engine)
|
||||||
|
|
||||||
|
|
||||||
|
@cl.on_message
|
||||||
|
async def main(message: cl.Message):
|
||||||
|
query_engine = cl.user_session.get("query_engine")
|
||||||
|
response = await cl.make_async(query_engine.query)(message.content)
|
||||||
|
|
||||||
|
response_message = cl.Message(content="")
|
||||||
|
|
||||||
|
for token in response.response_gen:
|
||||||
|
await response_message.stream_token(token=token)
|
||||||
|
|
||||||
|
if response.response_txt:
|
||||||
|
response_message.content = response.response_txt
|
||||||
|
|
||||||
|
await response_message.send()
|
7
examples/chainlit/requirements.txt
Normal file
7
examples/chainlit/requirements.txt
Normal file
|
@ -0,0 +1,7 @@
|
||||||
|
llama_hub==0.0.41
|
||||||
|
llama_index==0.8.55
|
||||||
|
Requests==2.31.0
|
||||||
|
weaviate_client==3.25.1
|
||||||
|
transformers
|
||||||
|
torch
|
||||||
|
chainlit
|
Loading…
Add table
Add a link
Reference in a new issue