feat(transformers): merge sentencetransformers backend (#4624)

* merge sentencetransformers

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add alias to silently redirect sentencetransformers to transformers

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add alias also for transformers-musicgen

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Drop from makefile

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Move tests from sentencetransformers

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Remove sentencetransformers

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Remove tests from CI (part of transformers)

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Do not always try to load the tokenizer

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Adapt tests

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Fix typo

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Tiny adjustments

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2025-01-18 18:30:30 +01:00 committed by GitHub
parent 4bd8434ae0
commit 1e9bf19c8d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
27 changed files with 104 additions and 354 deletions

View file

@ -1,31 +0,0 @@
.PHONY: sentencetransformers
sentencetransformers: protogen
bash ./install.sh
.PHONY: run
run: protogen
@echo "Running sentencetransformers..."
bash run.sh
@echo "sentencetransformers run."
# It is not working well by using command line. It only6 works with IDE like VSCode.
.PHONY: test
test: protogen
@echo "Testing sentencetransformers..."
bash test.sh
@echo "sentencetransformers tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View file

@ -1,5 +0,0 @@
# Creating a separate environment for the sentencetransformers project
```
make sentencetransformers
```

View file

@ -1,114 +0,0 @@
#!/usr/bin/env python3
"""
Extra gRPC server for HuggingFace SentenceTransformer models.
"""
from concurrent import futures
import argparse
import signal
import sys
import os
import time
import backend_pb2
import backend_pb2_grpc
import grpc
from sentence_transformers import SentenceTransformer
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
A gRPC servicer for the backend service.
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
"""
def Health(self, request, context):
"""
A gRPC method that returns the health status of the backend service.
Args:
request: A HealthRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Reply object that contains the health status of the backend service.
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
"""
A gRPC method that loads a model into memory.
Args:
request: A LoadModelRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Result object that contains the result of the LoadModel operation.
"""
model_name = request.Model
try:
self.model = SentenceTransformer(model_name, trust_remote_code=request.TrustRemoteCode)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Embedding(self, request, context):
"""
A gRPC method that calculates embeddings for a given sentence.
Args:
request: An EmbeddingRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
An EmbeddingResult object that contains the calculated embeddings.
"""
# Implement your logic here for the Embedding service
# Replace this with your desired response
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
sentence_embeddings = self.model.encode(request.Embeddings)
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View file

@ -1,14 +0,0 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
# This is here because the Intel pip index is broken and returns 200 status codes for every package name, it just doesn't return any package links.
# This makes uv think that the package exists in the Intel pip index, and by default it stops looking at other pip indexes once it finds a match.
# We need uv to continue falling through to the pypi default index to find optimum[openvino] in the pypi index
# the --upgrade actually allows us to *downgrade* torch to the version provided in the Intel pip index
if [ "x${BUILD_PROFILE}" == "xintel" ]; then
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
fi
installRequirements

View file

@ -1,6 +0,0 @@
torch==2.4.1
accelerate
transformers
bitsandbytes
sentence-transformers==3.3.1
transformers

View file

@ -1,5 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
accelerate
sentence-transformers==3.3.1
transformers

View file

@ -1,4 +0,0 @@
torch==2.4.1
accelerate
sentence-transformers==3.3.1
transformers

View file

@ -1,5 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0
accelerate
sentence-transformers==3.3.1
transformers

View file

@ -1,9 +0,0 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.3.1+cxx11.abi
oneccl_bind_pt==2.3.100+xpu
optimum[openvino]
setuptools
accelerate
sentence-transformers==3.3.1
transformers

View file

@ -1,5 +0,0 @@
grpcio==1.69.0
protobuf
certifi
datasets
einops

View file

@ -1,4 +0,0 @@
#!/bin/bash
source $(dirname $0)/../common/libbackend.sh
startBackend $@

View file

@ -1,81 +0,0 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.kill()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-nli-mean-tokens"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_embedding(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-nli-mean-tokens"))
self.assertTrue(response.success)
embedding_request = backend_pb2.PredictOptions(Embeddings="This is a test sentence.")
embedding_response = stub.Embedding(embedding_request)
self.assertIsNotNone(embedding_response.embeddings)
except Exception as err:
print(err)
self.fail("Embedding service failed")
finally:
self.tearDown()

View file

@ -1,6 +0,0 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
runUnittests

View file

@ -25,6 +25,8 @@ from transformers import AutoTokenizer, AutoModel, set_seed, TextIteratorStreame
from transformers import AutoProcessor, MusicgenForConditionalGeneration
from scipy.io import wavfile
import outetts
from sentence_transformers import SentenceTransformer
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
@ -88,10 +90,12 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
self.CUDA = torch.cuda.is_available()
self.OV=False
self.OuteTTS=False
self.SentenceTransformer = False
device_map="cpu"
quantization = None
autoTokenizer = True
if self.CUDA:
from transformers import BitsAndBytesConfig, AutoModelForCausalLM
@ -195,9 +199,11 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
device=device_map)
self.OV = True
elif request.Type == "MusicgenForConditionalGeneration":
autoTokenizer = False
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
elif request.Type == "OuteTTS":
autoTokenizer = False
options = request.Options
MODELNAME = "OuteAI/OuteTTS-0.3-1B"
TOKENIZER = "OuteAI/OuteTTS-0.3-1B"
@ -235,6 +241,10 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
self.speaker = self.interface.create_speaker(audio_path=self.AudioPath)
else:
self.speaker = self.interface.load_default_speaker(name=SPEAKER)
elif request.Type == "SentenceTransformer":
autoTokenizer = False
self.model = SentenceTransformer(model_name, trust_remote_code=request.TrustRemoteCode)
self.SentenceTransformer = True
else:
print("Automodel", file=sys.stderr)
self.model = AutoModel.from_pretrained(model_name,
@ -250,7 +260,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
else:
self.max_tokens = 512
if request.Type != "MusicgenForConditionalGeneration":
if autoTokenizer:
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
self.XPU = False
@ -286,18 +296,26 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
max_length = 512
if request.Tokens != 0:
max_length = request.Tokens
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
# Create word embeddings
if self.CUDA:
encoded_input = encoded_input.to("cuda")
embeds = None
with torch.no_grad():
model_output = self.model(**encoded_input)
if self.SentenceTransformer:
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
embeds = self.model.encode(request.Embeddings)
else:
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings[0])
# Create word embeddings
if self.CUDA:
encoded_input = encoded_input.to("cuda")
with torch.no_grad():
model_output = self.model(**encoded_input)
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
embeds = sentence_embeddings[0]
return backend_pb2.EmbeddingResult(embeddings=embeds)
async def _predict(self, request, context, streaming=False):
set_seed(request.Seed)

View file

@ -3,4 +3,5 @@ llvmlite==0.43.0
accelerate
transformers
bitsandbytes
outetts
outetts
sentence-transformers==3.3.1

View file

@ -4,4 +4,5 @@ llvmlite==0.43.0
accelerate
transformers
bitsandbytes
outetts
outetts
sentence-transformers==3.3.1

View file

@ -3,4 +3,5 @@ accelerate
llvmlite==0.43.0
transformers
bitsandbytes
outetts
outetts
sentence-transformers==3.3.1

View file

@ -4,4 +4,6 @@ accelerate
transformers
llvmlite==0.43.0
bitsandbytes
outetts
outetts
bitsandbytes
sentence-transformers==3.3.1

View file

@ -6,4 +6,5 @@ optimum[openvino]
llvmlite==0.43.0
intel-extension-for-transformers
bitsandbytes
outetts
outetts
sentence-transformers==3.3.1

View file

@ -133,5 +133,41 @@ class TestBackendServicer(unittest.TestCase):
except Exception as err:
print(err)
self.fail("SoundGeneration service failed")
finally:
self.tearDown()
def test_embed_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-nli-mean-tokens",Type="SentenceTransformer"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_sentencetransformers_embedding(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-nli-mean-tokens",Type="SentenceTransformer"))
self.assertTrue(response.success)
embedding_request = backend_pb2.PredictOptions(Embeddings="This is a test sentence.")
embedding_response = stub.Embedding(embedding_request)
self.assertIsNotNone(embedding_response.embeddings)
except Exception as err:
print(err)
self.fail("Embedding service failed")
finally:
self.tearDown()