feat: move other backends to grpc

This finally makes everything more consistent

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto 2023-07-15 01:19:43 +02:00
parent 5dcfdbe51d
commit 1d0ed95a54
54 changed files with 3171 additions and 1712 deletions

View file

@ -173,5 +173,12 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
app.Get("/v1/models", openai.ListModelsEndpoint(options.Loader, cm))
app.Get("/models", openai.ListModelsEndpoint(options.Loader, cm))
// turn off any process that was started by GRPC if the context is canceled
go func() {
<-options.Context.Done()
log.Debug().Msgf("Context canceled, shutting down")
options.Loader.StopGRPC()
}()
return app, nil
}

View file

@ -5,7 +5,9 @@ import (
"context"
"embed"
"encoding/json"
"errors"
"fmt"
"io"
"io/ioutil"
"net/http"
"os"
@ -24,6 +26,7 @@ import (
openaigo "github.com/otiai10/openaigo"
"github.com/sashabaranov/go-openai"
"github.com/sashabaranov/go-openai/jsonschema"
)
type modelApplyRequest struct {
@ -203,7 +206,7 @@ var _ = Describe("API test", func() {
fmt.Println(response)
resp = response
return response["processed"].(bool)
}, "360s").Should(Equal(true))
}, "360s", "10s").Should(Equal(true))
Expect(resp["message"]).ToNot(ContainSubstring("error"))
dat, err := os.ReadFile(filepath.Join(tmpdir, "bert2.yaml"))
@ -245,9 +248,8 @@ var _ = Describe("API test", func() {
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
fmt.Println(response)
return response["processed"].(bool)
}, "360s").Should(Equal(true))
}, "360s", "10s").Should(Equal(true))
dat, err := os.ReadFile(filepath.Join(tmpdir, "bert.yaml"))
Expect(err).ToNot(HaveOccurred())
@ -270,9 +272,8 @@ var _ = Describe("API test", func() {
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
fmt.Println(response)
return response["processed"].(bool)
}, "360s").Should(Equal(true))
}, "360s", "10s").Should(Equal(true))
dat, err := os.ReadFile(filepath.Join(tmpdir, "bert.yaml"))
Expect(err).ToNot(HaveOccurred())
@ -299,14 +300,58 @@ var _ = Describe("API test", func() {
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
fmt.Println(response)
return response["processed"].(bool)
}, "360s").Should(Equal(true))
}, "360s", "10s").Should(Equal(true))
By("testing completion")
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "openllama_3b", Prompt: "Count up to five: one, two, three, four, "})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Text).To(ContainSubstring("five"))
By("testing functions")
resp2, err := client.CreateChatCompletion(
context.TODO(),
openai.ChatCompletionRequest{
Model: "openllama_3b",
Messages: []openai.ChatCompletionMessage{
{
Role: "user",
Content: "What is the weather like in San Francisco (celsius)?",
},
},
Functions: []openai.FunctionDefinition{
openai.FunctionDefinition{
Name: "get_current_weather",
Description: "Get the current weather",
Parameters: jsonschema.Definition{
Type: jsonschema.Object,
Properties: map[string]jsonschema.Definition{
"location": {
Type: jsonschema.String,
Description: "The city and state, e.g. San Francisco, CA",
},
"unit": {
Type: jsonschema.String,
Enum: []string{"celcius", "fahrenheit"},
},
},
Required: []string{"location"},
},
},
},
})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp2.Choices)).To(Equal(1))
Expect(resp2.Choices[0].Message.FunctionCall).ToNot(BeNil())
Expect(resp2.Choices[0].Message.FunctionCall.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.FunctionCall.Name)
var res map[string]string
err = json.Unmarshal([]byte(resp2.Choices[0].Message.FunctionCall.Arguments), &res)
Expect(err).ToNot(HaveOccurred())
Expect(res["location"]).To(Equal("San Francisco"), fmt.Sprint(res))
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
Expect(string(resp2.Choices[0].FinishReason)).To(Equal("function_call"), fmt.Sprint(resp2.Choices[0].FinishReason))
})
It("runs gpt4all", Label("gpt4all"), func() {
@ -326,15 +371,126 @@ var _ = Describe("API test", func() {
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
fmt.Println(response)
return response["processed"].(bool)
}, "360s").Should(Equal(true))
}, "360s", "10s").Should(Equal(true))
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-j", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "How are you?"}}})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Message.Content).To(ContainSubstring("well"))
})
})
})
Context("Model gallery", func() {
BeforeEach(func() {
var err error
tmpdir, err = os.MkdirTemp("", "")
Expect(err).ToNot(HaveOccurred())
modelLoader = model.NewModelLoader(tmpdir)
c, cancel = context.WithCancel(context.Background())
galleries := []gallery.Gallery{
{
Name: "model-gallery",
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/index.yaml",
},
}
app, err = App(
options.WithContext(c),
options.WithAudioDir(tmpdir),
options.WithImageDir(tmpdir),
options.WithGalleries(galleries),
options.WithModelLoader(modelLoader),
options.WithBackendAssets(backendAssets),
options.WithBackendAssetsOutput(tmpdir),
)
Expect(err).ToNot(HaveOccurred())
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
defaultConfig.BaseURL = "http://127.0.0.1:9090/v1"
client2 = openaigo.NewClient("")
client2.BaseURL = defaultConfig.BaseURL
// Wait for API to be ready
client = openai.NewClientWithConfig(defaultConfig)
Eventually(func() error {
_, err := client.ListModels(context.TODO())
return err
}, "2m").ShouldNot(HaveOccurred())
})
AfterEach(func() {
cancel()
app.Shutdown()
os.RemoveAll(tmpdir)
})
It("installs and is capable to run tts", Label("tts"), func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
ID: "model-gallery@voice-en-us-kathleen-low",
})
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
uuid := response["uuid"].(string)
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
fmt.Println(response)
return response["processed"].(bool)
}, "360s", "10s").Should(Equal(true))
// An HTTP Post to the /tts endpoint should return a wav audio file
resp, err := http.Post("http://127.0.0.1:9090/tts", "application/json", bytes.NewBuffer([]byte(`{"input": "Hello world", "model": "en-us-kathleen-low.onnx"}`)))
Expect(err).ToNot(HaveOccurred(), fmt.Sprint(resp))
dat, err := io.ReadAll(resp.Body)
Expect(err).ToNot(HaveOccurred(), fmt.Sprint(resp))
Expect(resp.StatusCode).To(Equal(200), fmt.Sprint(string(dat)))
Expect(resp.Header.Get("Content-Type")).To(Equal("audio/x-wav"))
})
It("installs and is capable to generate images", Label("stablediffusion"), func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
ID: "model-gallery@stablediffusion",
})
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
uuid := response["uuid"].(string)
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
fmt.Println(response)
return response["processed"].(bool)
}, "360s", "10s").Should(Equal(true))
resp, err := http.Post(
"http://127.0.0.1:9090/v1/images/generations",
"application/json",
bytes.NewBuffer([]byte(`{
"prompt": "floating hair, portrait, ((loli)), ((one girl)), cute face, hidden hands, asymmetrical bangs, beautiful detailed eyes, eye shadow, hair ornament, ribbons, bowties, buttons, pleated skirt, (((masterpiece))), ((best quality)), colorful|((part of the head)), ((((mutated hands and fingers)))), deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation, mutated, extra limb, ugly, poorly drawn hands, missing limb, blurry, floating limbs, disconnected limbs, malformed hands, blur, out of focus, long neck, long body, Octane renderer, lowres, bad anatomy, bad hands, text",
"mode": 2, "seed":9000,
"size": "256x256", "n":2}`)))
// The response should contain an URL
Expect(err).ToNot(HaveOccurred(), fmt.Sprint(resp))
dat, err := io.ReadAll(resp.Body)
Expect(err).ToNot(HaveOccurred(), string(dat))
Expect(string(dat)).To(ContainSubstring("http://127.0.0.1:9090/"), string(dat))
Expect(string(dat)).To(ContainSubstring(".png"), string(dat))
})
})
@ -401,7 +557,7 @@ var _ = Describe("API test", func() {
It("returns errors", func() {
_, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "foomodel", Prompt: "abcdedfghikl"})
Expect(err).To(HaveOccurred())
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: could not load model - all backends returned error: 11 errors occurred:"))
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: could not load model - all backends returned error: 12 errors occurred:"))
})
It("transcribes audio", func() {
if runtime.GOOS != "linux" {
@ -446,14 +602,67 @@ var _ = Describe("API test", func() {
})
Context("backends", func() {
It("runs rwkv", func() {
It("runs rwkv completion", func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "rwkv_test", Prompt: "Count up to five: one, two, three, four,"})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices) > 0).To(BeTrue())
Expect(resp.Choices[0].Text).To(Equal(" five."))
Expect(resp.Choices[0].Text).To(ContainSubstring("five"))
stream, err := client.CreateCompletionStream(context.TODO(), openai.CompletionRequest{
Model: "rwkv_test", Prompt: "Count up to five: one, two, three, four,", Stream: true,
})
Expect(err).ToNot(HaveOccurred())
defer stream.Close()
tokens := 0
text := ""
for {
response, err := stream.Recv()
if errors.Is(err, io.EOF) {
break
}
Expect(err).ToNot(HaveOccurred())
text += response.Choices[0].Text
tokens++
}
Expect(text).ToNot(BeEmpty())
Expect(text).To(ContainSubstring("five"))
Expect(tokens).ToNot(Or(Equal(1), Equal(0)))
})
It("runs rwkv chat completion", func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
resp, err := client.CreateChatCompletion(context.TODO(),
openai.ChatCompletionRequest{Model: "rwkv_test", Messages: []openai.ChatCompletionMessage{{Content: "Can you count up to five?", Role: "user"}}})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices) > 0).To(BeTrue())
Expect(resp.Choices[0].Message.Content).To(Or(ContainSubstring("Sure"), ContainSubstring("five")))
stream, err := client.CreateChatCompletionStream(context.TODO(), openai.ChatCompletionRequest{Model: "rwkv_test", Messages: []openai.ChatCompletionMessage{{Content: "Can you count up to five?", Role: "user"}}})
Expect(err).ToNot(HaveOccurred())
defer stream.Close()
tokens := 0
text := ""
for {
response, err := stream.Recv()
if errors.Is(err, io.EOF) {
break
}
Expect(err).ToNot(HaveOccurred())
text += response.Choices[0].Delta.Content
tokens++
}
Expect(text).ToNot(BeEmpty())
Expect(text).To(Or(ContainSubstring("Sure"), ContainSubstring("five")))
Expect(tokens).ToNot(Or(Equal(1), Equal(0)))
})
})
})

View file

@ -1,7 +1,6 @@
package backend
import (
"context"
"fmt"
"sync"
@ -9,7 +8,6 @@ import (
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/grpc"
model "github.com/go-skynet/LocalAI/pkg/model"
bert "github.com/go-skynet/go-bert.cpp"
)
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.Config, o *options.Option) (func() ([]float32, error), error) {
@ -25,10 +23,11 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.
var err error
opts := []model.Option{
model.WithLoadGRPCOpts(grpcOpts),
model.WithLoadGRPCLLMModelOpts(grpcOpts),
model.WithThreads(uint32(c.Threads)),
model.WithAssetDir(o.AssetsDestination),
model.WithModelFile(modelFile),
model.WithContext(o.Context),
}
if c.Backend == "" {
@ -54,7 +53,7 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.
}
predictOptions.EmbeddingTokens = embeds
res, err := model.Embeddings(context.TODO(), predictOptions)
res, err := model.Embeddings(o.Context, predictOptions)
if err != nil {
return nil, err
}
@ -63,22 +62,13 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.
}
predictOptions.Embeddings = s
res, err := model.Embeddings(context.TODO(), predictOptions)
res, err := model.Embeddings(o.Context, predictOptions)
if err != nil {
return nil, err
}
return res.Embeddings, nil
}
// bert embeddings
case *bert.Bert:
fn = func() ([]float32, error) {
if len(tokens) > 0 {
return model.TokenEmbeddings(tokens, bert.SetThreads(c.Threads))
}
return model.Embeddings(s, bert.SetThreads(c.Threads))
}
default:
fn = func() ([]float32, error) {
return nil, fmt.Errorf("embeddings not supported by the backend")
@ -87,7 +77,15 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.
return func() ([]float32, error) {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
l := Lock(modelFile)
mutexMap.Lock()
l, ok := mutexes[modelFile]
if !ok {
m := &sync.Mutex{}
mutexes[modelFile] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
embeds, err := fn()

View file

@ -6,8 +6,8 @@ import (
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/stablediffusion"
)
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, dst string, loader *model.ModelLoader, c config.Config, o *options.Option) (func() error, error) {
@ -19,23 +19,27 @@ func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negat
model.WithBackendString(c.Backend),
model.WithAssetDir(o.AssetsDestination),
model.WithThreads(uint32(c.Threads)),
model.WithContext(o.Context),
model.WithModelFile(c.ImageGenerationAssets),
)
if err != nil {
return nil, err
}
var fn func() error
switch model := inferenceModel.(type) {
case *stablediffusion.StableDiffusion:
fn = func() error {
return model.GenerateImage(height, width, mode, step, seed, positive_prompt, negative_prompt, dst)
}
default:
fn = func() error {
return fmt.Errorf("creation of images not supported by the backend")
}
fn := func() error {
_, err := inferenceModel.GenerateImage(
o.Context,
&proto.GenerateImageRequest{
Height: int32(height),
Width: int32(width),
Mode: int32(mode),
Step: int32(step),
Seed: int32(seed),
PositivePrompt: positive_prompt,
NegativePrompt: negative_prompt,
Dst: dst,
})
return err
}
return func() error {

View file

@ -1,34 +1,30 @@
package backend
import (
"context"
"regexp"
"strings"
"sync"
"github.com/donomii/go-rwkv.cpp"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/grpc"
"github.com/go-skynet/LocalAI/pkg/langchain"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/bloomz.cpp"
)
func ModelInference(s string, loader *model.ModelLoader, c config.Config, o *options.Option, tokenCallback func(string) bool) (func() (string, error), error) {
supportStreams := false
modelFile := c.Model
grpcOpts := gRPCModelOpts(c)
var inferenceModel interface{}
var inferenceModel *grpc.Client
var err error
opts := []model.Option{
model.WithLoadGRPCOpts(grpcOpts),
model.WithThreads(uint32(c.Threads)), // GPT4all uses this
model.WithLoadGRPCLLMModelOpts(grpcOpts),
model.WithThreads(uint32(c.Threads)), // some models uses this to allocate threads during startup
model.WithAssetDir(o.AssetsDestination),
model.WithModelFile(modelFile),
model.WithContext(o.Context),
}
if c.Backend == "" {
@ -41,95 +37,37 @@ func ModelInference(s string, loader *model.ModelLoader, c config.Config, o *opt
return nil, err
}
var fn func() (string, error)
switch model := inferenceModel.(type) {
case *rwkv.RwkvState:
supportStreams = true
fn = func() (string, error) {
stopWord := "\n"
if len(c.StopWords) > 0 {
stopWord = c.StopWords[0]
}
if err := model.ProcessInput(s); err != nil {
return "", err
}
response := model.GenerateResponse(c.Maxtokens, stopWord, float32(c.Temperature), float32(c.TopP), tokenCallback)
return response, nil
}
case *bloomz.Bloomz:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []bloomz.PredictOption{
bloomz.SetTemperature(c.Temperature),
bloomz.SetTopP(c.TopP),
bloomz.SetTopK(c.TopK),
bloomz.SetTokens(c.Maxtokens),
bloomz.SetThreads(c.Threads),
}
if c.Seed != 0 {
predictOptions = append(predictOptions, bloomz.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *grpc.Client:
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
supportStreams = true
fn = func() (string, error) {
opts := gRPCPredictOpts(c, loader.ModelPath)
opts.Prompt = s
if tokenCallback != nil {
ss := ""
err := model.PredictStream(context.TODO(), opts, func(s string) {
tokenCallback(s)
ss += s
})
return ss, err
} else {
reply, err := model.Predict(context.TODO(), opts)
return reply.Message, err
}
}
case *langchain.HuggingFace:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []langchain.PredictOption{
langchain.SetModel(c.Model),
langchain.SetMaxTokens(c.Maxtokens),
langchain.SetTemperature(c.Temperature),
langchain.SetStopWords(c.StopWords),
}
pred, er := model.PredictHuggingFace(s, predictOptions...)
if er != nil {
return "", er
}
return pred.Completion, nil
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
fn := func() (string, error) {
opts := gRPCPredictOpts(c, loader.ModelPath)
opts.Prompt = s
if tokenCallback != nil {
ss := ""
err := inferenceModel.PredictStream(o.Context, opts, func(s string) {
tokenCallback(s)
ss += s
})
return ss, err
} else {
reply, err := inferenceModel.Predict(o.Context, opts)
return reply.Message, err
}
}
return func() (string, error) {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
l := Lock(modelFile)
mutexMap.Lock()
l, ok := mutexes[modelFile]
if !ok {
m := &sync.Mutex{}
mutexes[modelFile] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
res, err := fn()
if tokenCallback != nil && !supportStreams {
tokenCallback(res)
}
return res, err
return fn()
}, nil
}

View file

@ -7,34 +7,8 @@ import (
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/pkg/langchain"
"github.com/go-skynet/bloomz.cpp"
)
func langchainOptions(c config.Config) []langchain.PredictOption {
return []langchain.PredictOption{
langchain.SetModel(c.Model),
langchain.SetMaxTokens(c.Maxtokens),
langchain.SetTemperature(c.Temperature),
langchain.SetStopWords(c.StopWords),
}
}
func bloomzOptions(c config.Config) []bloomz.PredictOption {
// Generate the prediction using the language model
predictOptions := []bloomz.PredictOption{
bloomz.SetTemperature(c.Temperature),
bloomz.SetTopP(c.TopP),
bloomz.SetTopK(c.TopK),
bloomz.SetTokens(c.Maxtokens),
bloomz.SetThreads(c.Threads),
}
if c.Seed != 0 {
predictOptions = append(predictOptions, bloomz.SetSeed(c.Seed))
}
return predictOptions
}
func gRPCModelOpts(c config.Config) *pb.ModelOptions {
b := 512
if c.Batch != 0 {

View file

@ -1,6 +1,7 @@
package localai
import (
"context"
"fmt"
"os"
"path/filepath"
@ -8,8 +9,8 @@ import (
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/tts"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/gofiber/fiber/v2"
)
@ -47,6 +48,7 @@ func TTSEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
piperModel, err := o.Loader.BackendLoader(
model.WithBackendString(model.PiperBackend),
model.WithModelFile(input.Model),
model.WithContext(o.Context),
model.WithAssetDir(o.AssetsDestination))
if err != nil {
return err
@ -56,13 +58,8 @@ func TTSEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
return fmt.Errorf("could not load piper model")
}
w, ok := piperModel.(*tts.Piper)
if !ok {
return fmt.Errorf("loader returned non-piper object %+v", w)
}
if err := os.MkdirAll(o.AudioDir, 0755); err != nil {
return err
return fmt.Errorf("failed creating audio directory: %s", err)
}
fileName := generateUniqueFileName(o.AudioDir, "piper", ".wav")
@ -74,7 +71,11 @@ func TTSEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
return err
}
if err := w.TTS(input.Input, modelPath, filePath); err != nil {
if _, err := piperModel.TTS(context.Background(), &proto.TTSRequest{
Text: input.Input,
Model: modelPath,
Dst: filePath,
}); err != nil {
return err
}

View file

@ -1,6 +1,7 @@
package openai
import (
"context"
"fmt"
"io"
"net/http"
@ -8,11 +9,10 @@ import (
"path"
"path/filepath"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
whisperutil "github.com/go-skynet/LocalAI/pkg/whisper"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
@ -64,6 +64,7 @@ func TranscriptEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fibe
whisperModel, err := o.Loader.BackendLoader(
model.WithBackendString(model.WhisperBackend),
model.WithModelFile(config.Model),
model.WithContext(o.Context),
model.WithThreads(uint32(config.Threads)),
model.WithAssetDir(o.AssetsDestination))
if err != nil {
@ -74,18 +75,17 @@ func TranscriptEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fibe
return fmt.Errorf("could not load whisper model")
}
w, ok := whisperModel.(whisper.Model)
if !ok {
return fmt.Errorf("loader returned non-whisper object")
}
tr, err := whisperutil.Transcript(w, dst, input.Language, uint(config.Threads))
tr, err := whisperModel.AudioTranscription(context.Background(), &proto.TranscriptRequest{
Dst: dst,
Language: input.Language,
Threads: uint32(config.Threads),
})
if err != nil {
return err
}
log.Debug().Msgf("Trascribed: %+v", tr)
// TODO: handle different outputs here
return c.Status(http.StatusOK).JSON(fiber.Map{"text": tr})
return c.Status(http.StatusOK).JSON(tr)
}
}